Leyo commited on
Commit
954f037
·
1 Parent(s): 81277e3

create loading script for NVLR2

Browse files
Files changed (1) hide show
  1. NLVR2.py +113 -0
NLVR2.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """NVLR2 loading script."""
2
+
3
+
4
+ import json
5
+ import os
6
+ import datasets
7
+
8
+
9
+ _CITATION = """\
10
+ @article{DBLP:journals/corr/abs-2202-01994,
11
+ author = {Yamini Bansal and
12
+ Behrooz Ghorbani and
13
+ Ankush Garg and
14
+ Biao Zhang and
15
+ Maxim Krikun and
16
+ Colin Cherry and
17
+ Behnam Neyshabur and
18
+ Orhan Firat},
19
+ title = {Data Scaling Laws in {NMT:} The Effect of Noise and Architecture},
20
+ journal = {CoRR},
21
+ volume = {abs/2202.01994},
22
+ year = {2022},
23
+ url = {https://arxiv.org/abs/2202.01994},
24
+ eprinttype = {arXiv},
25
+ eprint = {2202.01994},
26
+ timestamp = {Mon, 24 Oct 2022 10:21:23 +0200},
27
+ biburl = {https://dblp.org/rec/journals/corr/abs-2202-01994.bib},
28
+ bibsource = {dblp computer science bibliography, https://dblp.org}
29
+ }
30
+ """
31
+
32
+ _DESCRIPTION = """\
33
+ The Natural Language for Visual Reasoning corpora are two language grounding datasets containing natural language sentences grounded in images. The task is to determine whether a sentence is true about a visual input. The data was collected through crowdsourcings, and solving the task requires reasoning about sets of objects, comparisons, and spatial relations. This includes two corpora: NLVR, with synthetically generated images, and NLVR2, which includes natural photographs.
34
+ """
35
+
36
+ _HOMEPAGE = "https://lil.nlp.cornell.edu/nlvr/"
37
+
38
+ _LICENSE = "CC BY 4.0" # TODO need to credit both ms coco and vqa authors!
39
+
40
+ _URL_BASE = "https://github.com/lil-lab/nlvr/tree/master/nlvr2/data"
41
+ _SPLITS = {
42
+ "train": "train.json",
43
+ "validation": "dev.json",
44
+ "test1": "test1.json",
45
+ "test2": "test2.json",
46
+ }
47
+
48
+
49
+ class NLVR2Dataset(datasets.GeneratorBasedBuilder):
50
+
51
+ VERSION = datasets.Version("1.0.0")
52
+
53
+
54
+ DEFAULT_CONFIG_NAME = "Default"
55
+
56
+ def _info(self):
57
+ return datasets.DatasetInfo(
58
+ description=_DESCRIPTION,
59
+ features=datasets.Features(
60
+ {
61
+ "identifier": datasets.Value("string"),
62
+ "sentence": datasets.Value("string"),
63
+ "left_image": datasets.Image(),
64
+ "right_image": datasets.Image(),
65
+ "label": datasets.Value("string"),
66
+ }
67
+ ),
68
+ homepage=_HOMEPAGE,
69
+ license=_LICENSE,
70
+ citation=_CITATION,
71
+ )
72
+
73
+ def _split_generators(self, dl_manager):
74
+ urls = {
75
+ "Default": {
76
+ "train": os.path.join(_URL_BASE, _SPLITS["train"]),
77
+ "validation": os.path.join(_URL_BASE, _SPLITS["validation"]),
78
+ "test1": os.path.join(_URL_BASE, _SPLITS["test1"]),
79
+ "test2": os.path.join(_URL_BASE, _SPLITS["test2"]),
80
+ },
81
+ }
82
+ files_path = dl_manager.download_and_extract(urls)
83
+ return [
84
+ datasets.SplitGenerator(
85
+ name=datasets.Split.TRAIN,
86
+ gen_kwargs={"files_path": files_path[self.config.name]["train"]},
87
+ ),
88
+ datasets.SplitGenerator(
89
+ name=datasets.Split.VALIDATION,
90
+ gen_kwargs={"files_path": files_path[self.config.name]["validation"]},
91
+ ),
92
+ datasets.SplitGenerator(
93
+ name=datasets.Split.TEST1,
94
+ gen_kwargs={"files_path": files_path[self.config.name]["test1"]},
95
+ ),
96
+ datasets.SplitGenerator(
97
+ name=datasets.Split.TEST2,
98
+ gen_kwargs={"files_path": files_path[self.config.name]["test2"]},
99
+ ),
100
+ ]
101
+
102
+ def _generate_examples(self, files_path):
103
+ json_file = json.load(open(files_path, "r"))
104
+
105
+ for i, ex in enumerate(json_file):
106
+ record = {
107
+ "identifier": ex["identifier"],
108
+ "sentence": ex["sentence"],
109
+ "left_image": str(ex["left_url"]),
110
+ "right_image": str(ex["right_url"]),
111
+ "label": ex["label"],
112
+ }
113
+ yield i, record