"""NVLR2 loading script.""" import json import os import datasets _CITATION = """\ @article{DBLP:journals/corr/abs-2202-01994, author = {Yamini Bansal and Behrooz Ghorbani and Ankush Garg and Biao Zhang and Maxim Krikun and Colin Cherry and Behnam Neyshabur and Orhan Firat}, title = {Data Scaling Laws in {NMT:} The Effect of Noise and Architecture}, journal = {CoRR}, volume = {abs/2202.01994}, year = {2022}, url = {https://arxiv.org/abs/2202.01994}, eprinttype = {arXiv}, eprint = {2202.01994}, timestamp = {Mon, 24 Oct 2022 10:21:23 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2202-01994.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """\ The Natural Language for Visual Reasoning corpora are two language grounding datasets containing natural language sentences grounded in images. The task is to determine whether a sentence is true about a visual input. The data was collected through crowdsourcings, and solving the task requires reasoning about sets of objects, comparisons, and spatial relations. This includes two corpora: NLVR, with synthetically generated images, and NLVR2, which includes natural photographs. """ _HOMEPAGE = "https://lil.nlp.cornell.edu/nlvr/" _LICENSE = "CC BY 4.0" _URL_JSON = "https://raw.githubusercontent.com/lil-lab/nlvr/master/nlvr2/data/" _URL_IMG = f"https://lil.nlp.cornell.edu/resources/NLVR2/" _SPLITS = { "train": "train", "validation": "dev", "test": "test", } class NLVR2Dataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DEFAULT_CONFIG_NAME = "default" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "identifier": datasets.Value("string"), "sentence": datasets.Value("string"), "left_image": datasets.Image(), "right_image": datasets.Image(), "label": datasets.features.ClassLabel(names=["True", "False"]), } ), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = { "default": { "train": os.path.join(_URL_JSON, f'{_SPLITS["train"]}.json'), "validation": os.path.join(_URL_JSON, f'{_SPLITS["validation"]}.json'), "test1": os.path.join(_URL_JSON, f'{_SPLITS["test"]}1.json'), "test2": os.path.join(_URL_JSON, f'{_SPLITS["test"]}2.json'), }, } files_path = dl_manager.download_and_extract(urls) images_files = { "train": os.path.join(_URL_IMG, f'{_SPLITS["train"]}_img.zip'), "validation": os.path.join(_URL_IMG, f'{_SPLITS["validation"]}_img.zip'), "test1": os.path.join(_URL_IMG, f'{_SPLITS["test"]}1_img.zip'), "test2": os.path.join(_URL_IMG, f'{_SPLITS["test"]}2.zip'), } train_img_path = os.path.join(dl_manager.extract(images_files["train"]), "images", "train") validation_img_path = os.path.join(dl_manager.download_and_extract(images_files["validation"]), "dev") test1_img_path = os.path.join(dl_manager.download_and_extract(images_files["test1"]), "test1") test2_img_path = os.path.join(dl_manager.download_and_extract(images_files["test2"]), "test2") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"files_paths": [files_path[self.config.name]["train"]], "images_paths": [train_img_path]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"files_paths": [files_path[self.config.name]["validation"]], "images_paths": [validation_img_path]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"files_paths": [files_path[self.config.name]["test1"], files_path[self.config.name]["test2"]], "images_paths": [test1_img_path, test2_img_path]}, ), ] def _generate_examples(self, files_paths, images_paths): idx = 0 for i, files_path in enumerate(files_paths): for line in open(files_path).readlines(): ex = json.loads(line) common_img_identifier = ex["identifier"].split("-") left_img_identifier = f"{common_img_identifier[0]}-{common_img_identifier[1]}-{common_img_identifier[2]}-img0.png" right_img_identifier = f"{common_img_identifier[0]}-{common_img_identifier[1]}-{common_img_identifier[2]}-img1.png" if common_img_identifier[0] == "train": directory = str(ex["directory"]) left_image_path = str(os.path.join(images_paths[i], directory, left_img_identifier)) right_image_path = str(os.path.join(images_paths[i], directory, right_img_identifier)) else: left_image_path = str(os.path.join(images_paths[i], left_img_identifier)) right_image_path = str(os.path.join(images_paths[i], right_img_identifier)) assert (os.path.exists(left_image_path)) assert (os.path.exists(right_image_path)) record = { "identifier": ex["identifier"], "sentence": ex["sentence"], "left_image": left_image_path, "right_image": right_image_path, "label": ex["label"], } idx += 1 yield idx, record