Add dataset card
Browse files
README.md
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- video-classification
|
| 5 |
+
- zero-shot-classification
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- social-signals
|
| 10 |
+
- behavioral-analysis
|
| 11 |
+
- multimodal
|
| 12 |
+
- video
|
| 13 |
+
pretty_name: Wave1 Test Set - Social Signal Detection
|
| 14 |
+
size_categories:
|
| 15 |
+
- n<1K
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Wave1 Test Set - Social Signal Detection
|
| 19 |
+
|
| 20 |
+
## Dataset Description
|
| 21 |
+
|
| 22 |
+
This dataset contains video clips annotated with social and affective signals for behavioral analysis tasks. Each sample includes:
|
| 23 |
+
|
| 24 |
+
- **System Prompt**: Instructions for behavioral analysis
|
| 25 |
+
- **Video URL**: Link to the video clip
|
| 26 |
+
- **Multi-labels**: Detected social signals from 12 categories
|
| 27 |
+
- **Video ID**: Unique identifier for the video
|
| 28 |
+
|
| 29 |
+
## Social Signal Categories
|
| 30 |
+
|
| 31 |
+
The dataset includes annotations for 12 social signals:
|
| 32 |
+
|
| 33 |
+
1. **Agreement**: Nods, verbal affirmations, affiliative smiles, posture mirroring
|
| 34 |
+
2. **Disagreement**: Opposition, interruptions, head shakes, eye rolls
|
| 35 |
+
3. **Engagement**: Sustained orientation, eye contact, forward-leaning posture
|
| 36 |
+
4. **Disengagement**: Gaze aversion, fidgeting, low-energy speech
|
| 37 |
+
5. **Confusion**: Puzzled facial display, increased blinking, clarification questions
|
| 38 |
+
6. **Hesitation**: Long gaps before speaking, filled pauses, restarts
|
| 39 |
+
7. **Uncertainty**: Hedged answers, rising final contour, shoulder shrugs
|
| 40 |
+
8. **Skepticism**: Questioning stance, delayed responses, furrowed brows
|
| 41 |
+
9. **Confidence**: Upright posture, sustained eye contact, clear speech
|
| 42 |
+
10. **Frustration**: Tension cues, higher pitch, sighs, complaints
|
| 43 |
+
11. **Interest**: Attentional engagement, widened eyes, faster speech
|
| 44 |
+
12. **Stress**: Self-touch, repetitive fidgeting, rapid blinking, vocal instability
|
| 45 |
+
|
| 46 |
+
## Data Format
|
| 47 |
+
|
| 48 |
+
The dataset is provided as a JSONL file where each line contains:
|
| 49 |
+
|
| 50 |
+
```json
|
| 51 |
+
{
|
| 52 |
+
"messages": [
|
| 53 |
+
{
|
| 54 |
+
"content": "System prompt with task instructions...",
|
| 55 |
+
"role": "system"
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"content": "<video>",
|
| 59 |
+
"role": "user"
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"content": "",
|
| 63 |
+
"role": "assistant"
|
| 64 |
+
}
|
| 65 |
+
],
|
| 66 |
+
"videos": ["https://..."],
|
| 67 |
+
"multilabels": ["Signal1", "Signal2", ...],
|
| 68 |
+
"video_id": "unique_video_identifier.mp4"
|
| 69 |
+
}
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Usage
|
| 73 |
+
|
| 74 |
+
```python
|
| 75 |
+
from datasets import load_dataset
|
| 76 |
+
|
| 77 |
+
# Load dataset
|
| 78 |
+
dataset = load_dataset("Interhuman/wave1-test-set", split="train")
|
| 79 |
+
|
| 80 |
+
# Or load the raw JSONL file
|
| 81 |
+
import json
|
| 82 |
+
|
| 83 |
+
with open("configs_wave1-test-set-dataset.jsonl", "r") as f:
|
| 84 |
+
data = [json.loads(line) for line in f]
|
| 85 |
+
|
| 86 |
+
# Access first sample
|
| 87 |
+
sample = data[0]
|
| 88 |
+
print(sample['video_id'])
|
| 89 |
+
print(sample['multilabels'])
|
| 90 |
+
print(sample['videos'][0])
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Dataset Statistics
|
| 94 |
+
|
| 95 |
+
- **Total Samples**: 50
|
| 96 |
+
- **Multi-label Classification**: Each video can have multiple social signals
|
| 97 |
+
- **Signal Distribution**: Varies across samples
|
| 98 |
+
|
| 99 |
+
## Citation
|
| 100 |
+
|
| 101 |
+
If you use this dataset, please cite:
|
| 102 |
+
|
| 103 |
+
```bibtex
|
| 104 |
+
@dataset{interhuman_wave1_test,
|
| 105 |
+
title={Wave1 Test Set - Social Signal Detection},
|
| 106 |
+
author={Interhuman},
|
| 107 |
+
year={2024},
|
| 108 |
+
publisher={Hugging Face}
|
| 109 |
+
}
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
## License
|
| 113 |
+
|
| 114 |
+
Apache 2.0
|