Datasets:

Modalities:
Image
Text
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
Irikos commited on
Commit
97625ed
·
verified ·
1 Parent(s): 25baa8c

Upload 196 files

Browse files

Initial upload of the entire dataset

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. RipVISv1.8.4_dataset_info.pdf +0 -0
  3. compute_coco_ap.py +97 -0
  4. compute_pr_f1_f2.py +164 -0
  5. test/coco_annotations/test_without_annotations.json +0 -0
  6. test/videos/RipVIS-002.mp4 +3 -0
  7. test/videos/RipVIS-008.mp4 +3 -0
  8. test/videos/RipVIS-009.mp4 +3 -0
  9. test/videos/RipVIS-013.mp4 +3 -0
  10. test/videos/RipVIS-019.mp4 +3 -0
  11. test/videos/RipVIS-023.mp4 +3 -0
  12. test/videos/RipVIS-025.mp4 +3 -0
  13. test/videos/RipVIS-027.mp4 +3 -0
  14. test/videos/RipVIS-038.mp4 +3 -0
  15. test/videos/RipVIS-043.mp4 +3 -0
  16. test/videos/RipVIS-047.mp4 +3 -0
  17. test/videos/RipVIS-048.mp4 +3 -0
  18. test/videos/RipVIS-055.mp4 +3 -0
  19. test/videos/RipVIS-073.mp4 +3 -0
  20. test/videos/RipVIS-074.mp4 +3 -0
  21. test/videos/RipVIS-078.mp4 +3 -0
  22. test/videos/RipVIS-081.mp4 +3 -0
  23. test/videos/RipVIS-099.mp4 +3 -0
  24. test/videos/RipVIS-113.mp4 +3 -0
  25. test/videos/RipVIS-114.mp4 +3 -0
  26. test/videos/RipVIS-119.mp4 +3 -0
  27. test/videos/RipVIS-120.mp4 +3 -0
  28. test/videos/RipVIS-125.mp4 +3 -0
  29. test/videos/RipVIS-130.mp4 +3 -0
  30. test/videos/RipVIS-131.mp4 +3 -0
  31. test/videos/RipVIS-132.mp4 +3 -0
  32. test/videos/RipVIS-138.mp4 +3 -0
  33. test/videos/RipVIS-139.mp4 +3 -0
  34. test/videos/RipVIS-142.mp4 +3 -0
  35. test/videos/RipVIS-145.mp4 +3 -0
  36. test/videos/RipVIS-NR-001.mp4 +3 -0
  37. test/videos/RipVIS-NR-005.mp4 +3 -0
  38. test/videos/RipVIS-NR-013.mp4 +3 -0
  39. test/videos/RipVIS-NR-014.mp4 +3 -0
  40. test/videos/RipVIS-NR-021.mp4 +3 -0
  41. test/videos/RipVIS-NR-023.mp4 +3 -0
  42. train/coco_annotations/additional_train_data.json +0 -0
  43. train/coco_annotations/train.json +3 -0
  44. train/coco_annotations/train_with_additional_data.json +3 -0
  45. train/sampled_images.zip +3 -0
  46. train/videos/RipVIS-003.mp4 +3 -0
  47. train/videos/RipVIS-004.mp4 +3 -0
  48. train/videos/RipVIS-005.mp4 +3 -0
  49. train/videos/RipVIS-006.mp4 +3 -0
  50. train/videos/RipVIS-010.mp4 +3 -0
.gitattributes CHANGED
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ train/coco_annotations/train_with_additional_data.json filter=lfs diff=lfs merge=lfs -text
61
+ train/coco_annotations/train.json filter=lfs diff=lfs merge=lfs -text
62
+ val/coco_annotations/val.json filter=lfs diff=lfs merge=lfs -text
RipVISv1.8.4_dataset_info.pdf ADDED
Binary file (70.7 kB). View file
 
compute_coco_ap.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Computes COCO-style evaluation metrics (Average Precision & Average Recall)
3
+ """
4
+
5
+ # --- Configure here ---
6
+ GROUND_TRUTH_JSON = "ground_truth.json"
7
+ PREDICTIONS_JSON = "predictions.json"
8
+ IOU_TYPE = "segm" # "segm", "bbox", or "keypoints"
9
+ OUTPUT_PATH = "results_ap.json" # set to None to skip saving
10
+ # ----------------------
11
+
12
+ import json
13
+ from pycocotools.coco import COCO
14
+ from pycocotools.cocoeval import COCOeval
15
+
16
+ def _load_predictions_for_coco(gt_coco: COCO, predictions_json_path: str):
17
+ """
18
+ Loads predictions into COCO's result format.
19
+
20
+ Args:
21
+ gt_coco (COCO): COCO object initialized with ground truth annotations.
22
+ predictions_json_path (str): Path to predictions JSON file.
23
+
24
+ Returns:
25
+ COCO: A COCO results object that can be passed into COCOeval.
26
+ """
27
+ with open(predictions_json_path, "r") as f:
28
+ data = json.load(f)
29
+
30
+ # Normalize predictions into a list of annotations
31
+ if isinstance(data, list):
32
+ anns = data
33
+ elif isinstance(data, dict) and "annotations" in data:
34
+ anns = data["annotations"]
35
+ else:
36
+ raise ValueError("Predictions must be a list or a dict with an 'annotations' key.")
37
+
38
+ # Ensure every annotation has a 'score' field (required for COCOeval)
39
+ for ann in anns:
40
+ if "score" not in ann:
41
+ ann["score"] = 1.0 # Assign default score if missing
42
+
43
+ # Load predictions into COCO format
44
+ return gt_coco.loadRes(anns)
45
+
46
+
47
+ def compute_ap_map(ground_truth_json: str, predictions_json: str, iou_type: str = "segm"):
48
+ """
49
+ Computes COCO-style AP/mAP and AR metrics.
50
+
51
+ Args:
52
+ ground_truth_json (str): Path to COCO-format ground truth file.
53
+ predictions_json (str): Path to predictions file.
54
+ iou_type (str): Type of evaluation ("segm", "bbox", or "keypoints").
55
+
56
+ Returns:
57
+ dict: Dictionary containing AP and AR values across IoU thresholds,
58
+ object sizes, and max detections.
59
+ """
60
+ # Load ground truth
61
+ gt_coco = COCO(ground_truth_json)
62
+
63
+ # Load predictions into COCO result format
64
+ pred_coco = _load_predictions_for_coco(gt_coco, predictions_json)
65
+
66
+ # Run COCO evaluation
67
+ coco_eval = COCOeval(gt_coco, pred_coco, iou_type)
68
+ coco_eval.evaluate()
69
+ coco_eval.accumulate()
70
+ coco_eval.summarize()
71
+
72
+ # Collect results from coco_eval.stats (12 values for bbox/segm)
73
+ stats = coco_eval.stats
74
+ results = {
75
+ "AP[0.50:0.95]": float(stats[0]), # mean AP over IoU thresholds .50:.95
76
+ "[email protected]": float(stats[1]), # AP at IoU=0.50
77
+ "[email protected]": float(stats[2]), # AP at IoU=0.75
78
+ "AP_small": float(stats[3]), # AP for small objects
79
+ "AP_medium": float(stats[4]), # AP for medium objects
80
+ "AP_large": float(stats[5]), # AP for large objects
81
+ "AR@1": float(stats[6]), # AR given max 1 detection per image
82
+ "AR@10": float(stats[7]), # AR given max 10 detections per image
83
+ "AR@100": float(stats[8]), # AR given max 100 detections per image
84
+ "AR_small": float(stats[9]), # AR for small objects
85
+ "AR_medium": float(stats[10]), # AR for medium objects
86
+ "AR_large": float(stats[11]), # AR for large objects
87
+ }
88
+ return results
89
+
90
+
91
+ if __name__ == "__main__":
92
+ scores = compute_ap_map(GROUND_TRUTH_JSON, PREDICTIONS_JSON, IOU_TYPE)
93
+
94
+ # Optionally save results to JSON
95
+ if OUTPUT_PATH:
96
+ with open(OUTPUT_PATH, "w") as f:
97
+ json.dump(scores, f, indent=2)
compute_pr_f1_f2.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Computes Precision, Recall, F1, F2. For this script, a confidence threshold variable is required to discard low-score predictions from the model
3
+ """
4
+
5
+
6
+ # --- Configure here ---
7
+ GROUND_TRUTH_JSON = "ground_truth.json"
8
+ PREDICTIONS_JSON = "predictions.json"
9
+ IOU_THRESHOLD = 0.5 # IoU threshold for a TP
10
+ CONFIDENCE_THRESHOLD = 0.1 # ENSURE THAT YOU ADJUST IT ACCORDING TO THE MODEL YOU CHOOSE: predictions with score < this are ignored
11
+ OUTPUT_PATH = "resuts.json" # set to None to skip saving
12
+ # ----------------------
13
+
14
+ import json
15
+ import numpy as np
16
+ from pycocotools.coco import COCO
17
+ from pycocotools import mask as maskUtils
18
+ from sklearn.metrics import precision_score, recall_score, f1_score
19
+
20
+ def _load_and_filter_predictions(predictions_json_path: str, conf_thr: float):
21
+ """
22
+ Loads predictions and applies confidence filtering.
23
+
24
+ Args:
25
+ predictions_json_path (str): Path to predictions file.
26
+ conf_thr (float): Minimum confidence score required to keep a prediction.
27
+
28
+ Returns:
29
+ list: Filtered list of prediction annotations.
30
+ """
31
+ with open(predictions_json_path, "r") as f:
32
+ data = json.load(f)
33
+
34
+ # Normalize to list of annotations
35
+ if isinstance(data, list):
36
+ anns = data
37
+ elif isinstance(data, dict) and "annotations" in data:
38
+ anns = data["annotations"]
39
+ else:
40
+ raise ValueError("Predictions must be a list or a dict with an 'annotations' key.")
41
+
42
+ # Keep only predictions above confidence threshold
43
+ filtered = []
44
+ for ann in anns:
45
+ score = ann.get("score", 1.0) # Default score if missing
46
+ if score >= conf_thr:
47
+ if "score" not in ann:
48
+ ann = {**ann, "score": float(score)}
49
+ filtered.append(ann)
50
+ return filtered
51
+
52
+
53
+ def compute_pr_f1_f2(ground_truth_json: str, predictions_json: str, iou_thr: float, conf_thr: float):
54
+ """
55
+ Computes precision, recall, F1, and F2 scores.
56
+
57
+ Steps:
58
+ - Load ground truth annotations.
59
+ - Load predictions and filter by confidence.
60
+ - For each image, compute IoU between GT and predicted masks.
61
+ - Match predictions to GT with highest IoU >= threshold.
62
+ - Count TP, FP, FN to derive metrics.
63
+
64
+ Args:
65
+ ground_truth_json (str): Path to COCO-format ground truth file.
66
+ predictions_json (str): Path to predictions file.
67
+ iou_thr (float): IoU threshold to accept a prediction as True Positive.
68
+ conf_thr (float): Confidence threshold for filtering predictions.
69
+
70
+ Returns:
71
+ dict: Metrics including precision, recall, F1, F2, and counts of TP, FP, FN.
72
+ """
73
+ # Load ground truth
74
+ gt_coco = COCO(ground_truth_json)
75
+
76
+ # Load and filter predictions, then convert to COCO results
77
+ filtered_preds = _load_and_filter_predictions(predictions_json, conf_thr)
78
+ pred_coco = gt_coco.loadRes(filtered_preds)
79
+
80
+ gt_img_ids = gt_coco.getImgIds()
81
+ y_true = []
82
+ y_pred = []
83
+
84
+ # Evaluate image by image
85
+ for img_id in gt_img_ids:
86
+ gt_ann_ids = gt_coco.getAnnIds(imgIds=img_id)
87
+ pred_ann_ids = pred_coco.getAnnIds(imgIds=img_id)
88
+
89
+ gt_anns = gt_coco.loadAnns(gt_ann_ids)
90
+ pred_anns = pred_coco.loadAnns(pred_ann_ids)
91
+
92
+ # Convert GT and predictions to binary masks
93
+ gt_masks = [maskUtils.decode(gt_coco.annToRLE(ann)) for ann in gt_anns]
94
+ pred_masks = [maskUtils.decode(pred_coco.annToRLE(ann)) for ann in pred_anns]
95
+
96
+ matched_gt = set()
97
+ for pred_mask in pred_masks:
98
+ best_iou = 0.0
99
+ best_gt_idx = None
100
+ # Find best IoU match with ground truth masks
101
+ for i, gt_mask in enumerate(gt_masks):
102
+ intersection = np.logical_and(gt_mask, pred_mask).sum()
103
+ union = np.logical_or(gt_mask, pred_mask).sum()
104
+ iou = (intersection / union) if union > 0 else 0.0
105
+ if iou > best_iou:
106
+ best_iou = iou
107
+ best_gt_idx = i
108
+
109
+ if best_iou >= iou_thr and best_gt_idx not in matched_gt:
110
+ # True Positive
111
+ y_true.append(1)
112
+ y_pred.append(1)
113
+ matched_gt.add(best_gt_idx)
114
+ else:
115
+ # False Positive
116
+ y_true.append(0)
117
+ y_pred.append(1)
118
+
119
+ # Unmatched ground truth = False Negatives
120
+ for i in range(len(gt_masks)):
121
+ if i not in matched_gt:
122
+ y_true.append(1)
123
+ y_pred.append(0)
124
+
125
+ # Compute metrics
126
+ precision = precision_score(y_true, y_pred, zero_division=1)
127
+ recall = recall_score(y_true, y_pred, zero_division=1)
128
+ f1 = f1_score(y_true, y_pred, zero_division=1)
129
+ f2 = (5 * precision * recall) / (4 * precision + recall) if (precision + recall) > 0 else 0.0
130
+
131
+ # Count TP, FP, FN
132
+ tp = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 1)
133
+ fp = sum(1 for t, p in zip(y_true, y_pred) if t == 0 and p == 1)
134
+ fn = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 0)
135
+
136
+ results = {
137
+ "precision": float(precision),
138
+ "recall": float(recall),
139
+ "f1": float(f1),
140
+ "f2": float(f2),
141
+
142
+ # Uncomment to print the number of fp, tp, fn as well
143
+
144
+ # "tp": int(tp),
145
+ # "fp": int(fp),
146
+ # "fn": int(fn),
147
+ }
148
+ return results
149
+
150
+
151
+ if __name__ == "__main__":
152
+ # Run evaluation and print results
153
+ scores = compute_pr_f1_f2(
154
+ GROUND_TRUTH_JSON,
155
+ PREDICTIONS_JSON,
156
+ IOU_THRESHOLD,
157
+ CONFIDENCE_THRESHOLD,
158
+ )
159
+ print(json.dumps(scores, indent=2))
160
+
161
+ # Optionally save results to JSON
162
+ if OUTPUT_PATH:
163
+ with open(OUTPUT_PATH, "w") as f:
164
+ json.dump(scores, f, indent=2)
test/coco_annotations/test_without_annotations.json ADDED
The diff for this file is too large to render. See raw diff
 
test/videos/RipVIS-002.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aff802becc36356307f5e2bbd39fb1010b3f0de0b52766f50f2c2469baa3582
3
+ size 12532114
test/videos/RipVIS-008.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab3f3823921af74614ea2cacb36c887e1889d8b73a74d0c160d759f27edbcb78
3
+ size 3122158
test/videos/RipVIS-009.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39a3376176f80d1707f553c07dac7525db27c47c7ebff099a0c98bbc489acd87
3
+ size 6923192
test/videos/RipVIS-013.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b49a0111b9d989f1979594c8ef2590685daff9fab6e9d97aae2177808f13fc46
3
+ size 51324347
test/videos/RipVIS-019.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e88814046b4a59fe24bb4a4266359add3afa22eceaaf6a6caa68fddc5dbbe8ba
3
+ size 21005249
test/videos/RipVIS-023.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e373e78f75735f8dfb74ac5c1d7f561ea5d79c581651bd74a5510a3305a697a3
3
+ size 668941182
test/videos/RipVIS-025.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b48eda789cc0082570b779203cab50393dbf0a6228c994c1316be0a1d68a3d10
3
+ size 94636137
test/videos/RipVIS-027.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fe57516a473544a30398dbc73b5be8442699625f698c5e47f8b3ed9093e6211
3
+ size 92996724
test/videos/RipVIS-038.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:943b58b0298c3d445390dabde6dd407f3cd0ab6d2e933fdccfeec640ab159056
3
+ size 181232564
test/videos/RipVIS-043.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6612c22b4dfe5ac1f47145e0048211716e8aa23c97a9ff55ce1d062deed110db
3
+ size 519175563
test/videos/RipVIS-047.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1890146ddab390e62f2be09dbbaa5f2318c2023eb42e1c72e4f6e4b2e6502f40
3
+ size 17617249
test/videos/RipVIS-048.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c4d8d91518a2cff1ed909208d8095aa04147429810200c95416f2bf9a255b81
3
+ size 7607848
test/videos/RipVIS-055.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22655a85b17db9c86aec3764afa61a2c00a37164af4aa8b72fa931a8599b1d66
3
+ size 7195894
test/videos/RipVIS-073.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77b62e825c4be334bea010bc9fa2742338437a2b74b2cb24e9ca7c5972a688e1
3
+ size 2284842
test/videos/RipVIS-074.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:317475aaa5b8317dab1fdb7befc4d0b64d1b749a270b3b97388c3295ffb29a23
3
+ size 3326468
test/videos/RipVIS-078.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7d64394821dcd2c68af696335f467b883fea2876312e922e77d19374a1337a
3
+ size 15464452
test/videos/RipVIS-081.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d2937de7a2bd2ae44a1a95e03355f5bfe16f7688bcada1f86b3ea2cb63a049e
3
+ size 14944545
test/videos/RipVIS-099.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75e886e28dd5f267e06b54e68eded776592c8e5e04d1d637124bf06b19a9767a
3
+ size 22105916
test/videos/RipVIS-113.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b347565c53dfa659ae34493c53d33bc2d8a5afbefb32d937bcf35cda60e8a7df
3
+ size 238729673
test/videos/RipVIS-114.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c483f5e21a7c6fc9c412d1a34574817eb779295f3c32d67eea7e743375996b0
3
+ size 69784781
test/videos/RipVIS-119.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63dc6932b0240a759223aaed018e82d0f36fac826913166112118ac0cbbe5220
3
+ size 68900391
test/videos/RipVIS-120.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e7dff2383d4c038c970979d2f4b0cd9ecb21e849a7e6d927dc687a7bd94019
3
+ size 2299497
test/videos/RipVIS-125.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f28df7c875b033906fda8cc8949356f735bbc83a5ab112cd5c81e400670eb56
3
+ size 5881187
test/videos/RipVIS-130.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1359f0db646fe3115d8da9836302f69749ebc84d3996508d6bdb45f6f9194e3f
3
+ size 54077722
test/videos/RipVIS-131.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b06882d4a2c9dd267c0602dc316e15d1b36f82b890756d2fdeb4bcf8f79bcf4
3
+ size 35432678
test/videos/RipVIS-132.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fa95d5d5bc3249be65539be6766ef5a1fc4eda288166f8cece8e21b920d1e37
3
+ size 13101514
test/videos/RipVIS-138.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df6be4853c14212e0738dd0a02baffd912aa42f8ea2698709332562b0f88daf8
3
+ size 4712738
test/videos/RipVIS-139.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4473d95d2ffb5cef8c7827ba172db0a9198afb50eec90d6e7e89d5eabfb3804a
3
+ size 4218334
test/videos/RipVIS-142.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:097e50c6e8f31c7a3d5751d1f1e2185323e07edaad24891d8c26a15f62f7bd7c
3
+ size 54348170
test/videos/RipVIS-145.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:248c99088eb08c1e260b43e4d829d4631c0c302a96f14b2d037f9907a7265de8
3
+ size 138441036
test/videos/RipVIS-NR-001.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:415fd1381ee2c6cf24c566ac0bdd3ede013087aba86ad8c4cb81e26e141d215d
3
+ size 62998066
test/videos/RipVIS-NR-005.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95a07b5987024af832cbb54284b8738c4df319b77de5002b65d33370762361af
3
+ size 72549809
test/videos/RipVIS-NR-013.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d68b14a54ad81f0e121dd4b008d607fbd386688350e527e577a9a136d6a7f23
3
+ size 36636127
test/videos/RipVIS-NR-014.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a3dc36c1c79329d9fcf1833b3528a572d35f1cceb82d6941aca87beb7bb658a
3
+ size 35881166
test/videos/RipVIS-NR-021.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5af06bcd5ee6f75117f9e148ae035758a3667cdaccb7cf1cb8dbb9b57c6e4089
3
+ size 102016372
test/videos/RipVIS-NR-023.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa1acb7eec9d6a6a33d7e8992df6dbfb4a662ee6cacada73d79dfe4c8f0264cf
3
+ size 98800745
train/coco_annotations/additional_train_data.json ADDED
The diff for this file is too large to render. See raw diff
 
train/coco_annotations/train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d925b30bf2718169dc221994d855397739b38615555bd7a0685841a069969fec
3
+ size 41419994
train/coco_annotations/train_with_additional_data.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5b3ab97613607cad28ef148e8d60c20f88bc7505887081b901bcbcf1beba56b
3
+ size 46731720
train/sampled_images.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b86152bfe13b488e77eb45ee1bff0f81cf7cf2e393293985fd8f248aca84a862
3
+ size 6662772952
train/videos/RipVIS-003.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d26c4329520990dbd36afd2c97d5ceaebf4ce7bb91597db28ddc1a36fe53b925
3
+ size 2835712
train/videos/RipVIS-004.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:611de651caf24c002e634360510b6e2762392f6c8c9c50636a93001af6863dc8
3
+ size 18578119
train/videos/RipVIS-005.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f34f119bd59f66c3407288fc5879cd76468e62102d8793fb7039d0d7e11be25c
3
+ size 16414060
train/videos/RipVIS-006.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3af4f3b499079bf1bd26245eaf9bd8fdfe3039aa80e69cb0585e86c11b394e3
3
+ size 62829316
train/videos/RipVIS-010.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93f461c0a495f837a409b3e5b665a2d23795682a286c9fdbf43e65da98dbae35
3
+ size 7902569