Upload 196 files
Browse filesInitial upload of the entire dataset
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- RipVISv1.8.4_dataset_info.pdf +0 -0
- compute_coco_ap.py +97 -0
- compute_pr_f1_f2.py +164 -0
- test/coco_annotations/test_without_annotations.json +0 -0
- test/videos/RipVIS-002.mp4 +3 -0
- test/videos/RipVIS-008.mp4 +3 -0
- test/videos/RipVIS-009.mp4 +3 -0
- test/videos/RipVIS-013.mp4 +3 -0
- test/videos/RipVIS-019.mp4 +3 -0
- test/videos/RipVIS-023.mp4 +3 -0
- test/videos/RipVIS-025.mp4 +3 -0
- test/videos/RipVIS-027.mp4 +3 -0
- test/videos/RipVIS-038.mp4 +3 -0
- test/videos/RipVIS-043.mp4 +3 -0
- test/videos/RipVIS-047.mp4 +3 -0
- test/videos/RipVIS-048.mp4 +3 -0
- test/videos/RipVIS-055.mp4 +3 -0
- test/videos/RipVIS-073.mp4 +3 -0
- test/videos/RipVIS-074.mp4 +3 -0
- test/videos/RipVIS-078.mp4 +3 -0
- test/videos/RipVIS-081.mp4 +3 -0
- test/videos/RipVIS-099.mp4 +3 -0
- test/videos/RipVIS-113.mp4 +3 -0
- test/videos/RipVIS-114.mp4 +3 -0
- test/videos/RipVIS-119.mp4 +3 -0
- test/videos/RipVIS-120.mp4 +3 -0
- test/videos/RipVIS-125.mp4 +3 -0
- test/videos/RipVIS-130.mp4 +3 -0
- test/videos/RipVIS-131.mp4 +3 -0
- test/videos/RipVIS-132.mp4 +3 -0
- test/videos/RipVIS-138.mp4 +3 -0
- test/videos/RipVIS-139.mp4 +3 -0
- test/videos/RipVIS-142.mp4 +3 -0
- test/videos/RipVIS-145.mp4 +3 -0
- test/videos/RipVIS-NR-001.mp4 +3 -0
- test/videos/RipVIS-NR-005.mp4 +3 -0
- test/videos/RipVIS-NR-013.mp4 +3 -0
- test/videos/RipVIS-NR-014.mp4 +3 -0
- test/videos/RipVIS-NR-021.mp4 +3 -0
- test/videos/RipVIS-NR-023.mp4 +3 -0
- train/coco_annotations/additional_train_data.json +0 -0
- train/coco_annotations/train.json +3 -0
- train/coco_annotations/train_with_additional_data.json +3 -0
- train/sampled_images.zip +3 -0
- train/videos/RipVIS-003.mp4 +3 -0
- train/videos/RipVIS-004.mp4 +3 -0
- train/videos/RipVIS-005.mp4 +3 -0
- train/videos/RipVIS-006.mp4 +3 -0
- train/videos/RipVIS-010.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -57,3 +57,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
train/coco_annotations/train_with_additional_data.json filter=lfs diff=lfs merge=lfs -text
|
| 61 |
+
train/coco_annotations/train.json filter=lfs diff=lfs merge=lfs -text
|
| 62 |
+
val/coco_annotations/val.json filter=lfs diff=lfs merge=lfs -text
|
RipVISv1.8.4_dataset_info.pdf
ADDED
|
Binary file (70.7 kB). View file
|
|
|
compute_coco_ap.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Computes COCO-style evaluation metrics (Average Precision & Average Recall)
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# --- Configure here ---
|
| 6 |
+
GROUND_TRUTH_JSON = "ground_truth.json"
|
| 7 |
+
PREDICTIONS_JSON = "predictions.json"
|
| 8 |
+
IOU_TYPE = "segm" # "segm", "bbox", or "keypoints"
|
| 9 |
+
OUTPUT_PATH = "results_ap.json" # set to None to skip saving
|
| 10 |
+
# ----------------------
|
| 11 |
+
|
| 12 |
+
import json
|
| 13 |
+
from pycocotools.coco import COCO
|
| 14 |
+
from pycocotools.cocoeval import COCOeval
|
| 15 |
+
|
| 16 |
+
def _load_predictions_for_coco(gt_coco: COCO, predictions_json_path: str):
|
| 17 |
+
"""
|
| 18 |
+
Loads predictions into COCO's result format.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
gt_coco (COCO): COCO object initialized with ground truth annotations.
|
| 22 |
+
predictions_json_path (str): Path to predictions JSON file.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
COCO: A COCO results object that can be passed into COCOeval.
|
| 26 |
+
"""
|
| 27 |
+
with open(predictions_json_path, "r") as f:
|
| 28 |
+
data = json.load(f)
|
| 29 |
+
|
| 30 |
+
# Normalize predictions into a list of annotations
|
| 31 |
+
if isinstance(data, list):
|
| 32 |
+
anns = data
|
| 33 |
+
elif isinstance(data, dict) and "annotations" in data:
|
| 34 |
+
anns = data["annotations"]
|
| 35 |
+
else:
|
| 36 |
+
raise ValueError("Predictions must be a list or a dict with an 'annotations' key.")
|
| 37 |
+
|
| 38 |
+
# Ensure every annotation has a 'score' field (required for COCOeval)
|
| 39 |
+
for ann in anns:
|
| 40 |
+
if "score" not in ann:
|
| 41 |
+
ann["score"] = 1.0 # Assign default score if missing
|
| 42 |
+
|
| 43 |
+
# Load predictions into COCO format
|
| 44 |
+
return gt_coco.loadRes(anns)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def compute_ap_map(ground_truth_json: str, predictions_json: str, iou_type: str = "segm"):
|
| 48 |
+
"""
|
| 49 |
+
Computes COCO-style AP/mAP and AR metrics.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
ground_truth_json (str): Path to COCO-format ground truth file.
|
| 53 |
+
predictions_json (str): Path to predictions file.
|
| 54 |
+
iou_type (str): Type of evaluation ("segm", "bbox", or "keypoints").
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
dict: Dictionary containing AP and AR values across IoU thresholds,
|
| 58 |
+
object sizes, and max detections.
|
| 59 |
+
"""
|
| 60 |
+
# Load ground truth
|
| 61 |
+
gt_coco = COCO(ground_truth_json)
|
| 62 |
+
|
| 63 |
+
# Load predictions into COCO result format
|
| 64 |
+
pred_coco = _load_predictions_for_coco(gt_coco, predictions_json)
|
| 65 |
+
|
| 66 |
+
# Run COCO evaluation
|
| 67 |
+
coco_eval = COCOeval(gt_coco, pred_coco, iou_type)
|
| 68 |
+
coco_eval.evaluate()
|
| 69 |
+
coco_eval.accumulate()
|
| 70 |
+
coco_eval.summarize()
|
| 71 |
+
|
| 72 |
+
# Collect results from coco_eval.stats (12 values for bbox/segm)
|
| 73 |
+
stats = coco_eval.stats
|
| 74 |
+
results = {
|
| 75 |
+
"AP[0.50:0.95]": float(stats[0]), # mean AP over IoU thresholds .50:.95
|
| 76 |
+
"[email protected]": float(stats[1]), # AP at IoU=0.50
|
| 77 |
+
"[email protected]": float(stats[2]), # AP at IoU=0.75
|
| 78 |
+
"AP_small": float(stats[3]), # AP for small objects
|
| 79 |
+
"AP_medium": float(stats[4]), # AP for medium objects
|
| 80 |
+
"AP_large": float(stats[5]), # AP for large objects
|
| 81 |
+
"AR@1": float(stats[6]), # AR given max 1 detection per image
|
| 82 |
+
"AR@10": float(stats[7]), # AR given max 10 detections per image
|
| 83 |
+
"AR@100": float(stats[8]), # AR given max 100 detections per image
|
| 84 |
+
"AR_small": float(stats[9]), # AR for small objects
|
| 85 |
+
"AR_medium": float(stats[10]), # AR for medium objects
|
| 86 |
+
"AR_large": float(stats[11]), # AR for large objects
|
| 87 |
+
}
|
| 88 |
+
return results
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
scores = compute_ap_map(GROUND_TRUTH_JSON, PREDICTIONS_JSON, IOU_TYPE)
|
| 93 |
+
|
| 94 |
+
# Optionally save results to JSON
|
| 95 |
+
if OUTPUT_PATH:
|
| 96 |
+
with open(OUTPUT_PATH, "w") as f:
|
| 97 |
+
json.dump(scores, f, indent=2)
|
compute_pr_f1_f2.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Computes Precision, Recall, F1, F2. For this script, a confidence threshold variable is required to discard low-score predictions from the model
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# --- Configure here ---
|
| 7 |
+
GROUND_TRUTH_JSON = "ground_truth.json"
|
| 8 |
+
PREDICTIONS_JSON = "predictions.json"
|
| 9 |
+
IOU_THRESHOLD = 0.5 # IoU threshold for a TP
|
| 10 |
+
CONFIDENCE_THRESHOLD = 0.1 # ENSURE THAT YOU ADJUST IT ACCORDING TO THE MODEL YOU CHOOSE: predictions with score < this are ignored
|
| 11 |
+
OUTPUT_PATH = "resuts.json" # set to None to skip saving
|
| 12 |
+
# ----------------------
|
| 13 |
+
|
| 14 |
+
import json
|
| 15 |
+
import numpy as np
|
| 16 |
+
from pycocotools.coco import COCO
|
| 17 |
+
from pycocotools import mask as maskUtils
|
| 18 |
+
from sklearn.metrics import precision_score, recall_score, f1_score
|
| 19 |
+
|
| 20 |
+
def _load_and_filter_predictions(predictions_json_path: str, conf_thr: float):
|
| 21 |
+
"""
|
| 22 |
+
Loads predictions and applies confidence filtering.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
predictions_json_path (str): Path to predictions file.
|
| 26 |
+
conf_thr (float): Minimum confidence score required to keep a prediction.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
list: Filtered list of prediction annotations.
|
| 30 |
+
"""
|
| 31 |
+
with open(predictions_json_path, "r") as f:
|
| 32 |
+
data = json.load(f)
|
| 33 |
+
|
| 34 |
+
# Normalize to list of annotations
|
| 35 |
+
if isinstance(data, list):
|
| 36 |
+
anns = data
|
| 37 |
+
elif isinstance(data, dict) and "annotations" in data:
|
| 38 |
+
anns = data["annotations"]
|
| 39 |
+
else:
|
| 40 |
+
raise ValueError("Predictions must be a list or a dict with an 'annotations' key.")
|
| 41 |
+
|
| 42 |
+
# Keep only predictions above confidence threshold
|
| 43 |
+
filtered = []
|
| 44 |
+
for ann in anns:
|
| 45 |
+
score = ann.get("score", 1.0) # Default score if missing
|
| 46 |
+
if score >= conf_thr:
|
| 47 |
+
if "score" not in ann:
|
| 48 |
+
ann = {**ann, "score": float(score)}
|
| 49 |
+
filtered.append(ann)
|
| 50 |
+
return filtered
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def compute_pr_f1_f2(ground_truth_json: str, predictions_json: str, iou_thr: float, conf_thr: float):
|
| 54 |
+
"""
|
| 55 |
+
Computes precision, recall, F1, and F2 scores.
|
| 56 |
+
|
| 57 |
+
Steps:
|
| 58 |
+
- Load ground truth annotations.
|
| 59 |
+
- Load predictions and filter by confidence.
|
| 60 |
+
- For each image, compute IoU between GT and predicted masks.
|
| 61 |
+
- Match predictions to GT with highest IoU >= threshold.
|
| 62 |
+
- Count TP, FP, FN to derive metrics.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
ground_truth_json (str): Path to COCO-format ground truth file.
|
| 66 |
+
predictions_json (str): Path to predictions file.
|
| 67 |
+
iou_thr (float): IoU threshold to accept a prediction as True Positive.
|
| 68 |
+
conf_thr (float): Confidence threshold for filtering predictions.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
dict: Metrics including precision, recall, F1, F2, and counts of TP, FP, FN.
|
| 72 |
+
"""
|
| 73 |
+
# Load ground truth
|
| 74 |
+
gt_coco = COCO(ground_truth_json)
|
| 75 |
+
|
| 76 |
+
# Load and filter predictions, then convert to COCO results
|
| 77 |
+
filtered_preds = _load_and_filter_predictions(predictions_json, conf_thr)
|
| 78 |
+
pred_coco = gt_coco.loadRes(filtered_preds)
|
| 79 |
+
|
| 80 |
+
gt_img_ids = gt_coco.getImgIds()
|
| 81 |
+
y_true = []
|
| 82 |
+
y_pred = []
|
| 83 |
+
|
| 84 |
+
# Evaluate image by image
|
| 85 |
+
for img_id in gt_img_ids:
|
| 86 |
+
gt_ann_ids = gt_coco.getAnnIds(imgIds=img_id)
|
| 87 |
+
pred_ann_ids = pred_coco.getAnnIds(imgIds=img_id)
|
| 88 |
+
|
| 89 |
+
gt_anns = gt_coco.loadAnns(gt_ann_ids)
|
| 90 |
+
pred_anns = pred_coco.loadAnns(pred_ann_ids)
|
| 91 |
+
|
| 92 |
+
# Convert GT and predictions to binary masks
|
| 93 |
+
gt_masks = [maskUtils.decode(gt_coco.annToRLE(ann)) for ann in gt_anns]
|
| 94 |
+
pred_masks = [maskUtils.decode(pred_coco.annToRLE(ann)) for ann in pred_anns]
|
| 95 |
+
|
| 96 |
+
matched_gt = set()
|
| 97 |
+
for pred_mask in pred_masks:
|
| 98 |
+
best_iou = 0.0
|
| 99 |
+
best_gt_idx = None
|
| 100 |
+
# Find best IoU match with ground truth masks
|
| 101 |
+
for i, gt_mask in enumerate(gt_masks):
|
| 102 |
+
intersection = np.logical_and(gt_mask, pred_mask).sum()
|
| 103 |
+
union = np.logical_or(gt_mask, pred_mask).sum()
|
| 104 |
+
iou = (intersection / union) if union > 0 else 0.0
|
| 105 |
+
if iou > best_iou:
|
| 106 |
+
best_iou = iou
|
| 107 |
+
best_gt_idx = i
|
| 108 |
+
|
| 109 |
+
if best_iou >= iou_thr and best_gt_idx not in matched_gt:
|
| 110 |
+
# True Positive
|
| 111 |
+
y_true.append(1)
|
| 112 |
+
y_pred.append(1)
|
| 113 |
+
matched_gt.add(best_gt_idx)
|
| 114 |
+
else:
|
| 115 |
+
# False Positive
|
| 116 |
+
y_true.append(0)
|
| 117 |
+
y_pred.append(1)
|
| 118 |
+
|
| 119 |
+
# Unmatched ground truth = False Negatives
|
| 120 |
+
for i in range(len(gt_masks)):
|
| 121 |
+
if i not in matched_gt:
|
| 122 |
+
y_true.append(1)
|
| 123 |
+
y_pred.append(0)
|
| 124 |
+
|
| 125 |
+
# Compute metrics
|
| 126 |
+
precision = precision_score(y_true, y_pred, zero_division=1)
|
| 127 |
+
recall = recall_score(y_true, y_pred, zero_division=1)
|
| 128 |
+
f1 = f1_score(y_true, y_pred, zero_division=1)
|
| 129 |
+
f2 = (5 * precision * recall) / (4 * precision + recall) if (precision + recall) > 0 else 0.0
|
| 130 |
+
|
| 131 |
+
# Count TP, FP, FN
|
| 132 |
+
tp = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 1)
|
| 133 |
+
fp = sum(1 for t, p in zip(y_true, y_pred) if t == 0 and p == 1)
|
| 134 |
+
fn = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 0)
|
| 135 |
+
|
| 136 |
+
results = {
|
| 137 |
+
"precision": float(precision),
|
| 138 |
+
"recall": float(recall),
|
| 139 |
+
"f1": float(f1),
|
| 140 |
+
"f2": float(f2),
|
| 141 |
+
|
| 142 |
+
# Uncomment to print the number of fp, tp, fn as well
|
| 143 |
+
|
| 144 |
+
# "tp": int(tp),
|
| 145 |
+
# "fp": int(fp),
|
| 146 |
+
# "fn": int(fn),
|
| 147 |
+
}
|
| 148 |
+
return results
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
if __name__ == "__main__":
|
| 152 |
+
# Run evaluation and print results
|
| 153 |
+
scores = compute_pr_f1_f2(
|
| 154 |
+
GROUND_TRUTH_JSON,
|
| 155 |
+
PREDICTIONS_JSON,
|
| 156 |
+
IOU_THRESHOLD,
|
| 157 |
+
CONFIDENCE_THRESHOLD,
|
| 158 |
+
)
|
| 159 |
+
print(json.dumps(scores, indent=2))
|
| 160 |
+
|
| 161 |
+
# Optionally save results to JSON
|
| 162 |
+
if OUTPUT_PATH:
|
| 163 |
+
with open(OUTPUT_PATH, "w") as f:
|
| 164 |
+
json.dump(scores, f, indent=2)
|
test/coco_annotations/test_without_annotations.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
test/videos/RipVIS-002.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6aff802becc36356307f5e2bbd39fb1010b3f0de0b52766f50f2c2469baa3582
|
| 3 |
+
size 12532114
|
test/videos/RipVIS-008.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ab3f3823921af74614ea2cacb36c887e1889d8b73a74d0c160d759f27edbcb78
|
| 3 |
+
size 3122158
|
test/videos/RipVIS-009.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39a3376176f80d1707f553c07dac7525db27c47c7ebff099a0c98bbc489acd87
|
| 3 |
+
size 6923192
|
test/videos/RipVIS-013.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b49a0111b9d989f1979594c8ef2590685daff9fab6e9d97aae2177808f13fc46
|
| 3 |
+
size 51324347
|
test/videos/RipVIS-019.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e88814046b4a59fe24bb4a4266359add3afa22eceaaf6a6caa68fddc5dbbe8ba
|
| 3 |
+
size 21005249
|
test/videos/RipVIS-023.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e373e78f75735f8dfb74ac5c1d7f561ea5d79c581651bd74a5510a3305a697a3
|
| 3 |
+
size 668941182
|
test/videos/RipVIS-025.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b48eda789cc0082570b779203cab50393dbf0a6228c994c1316be0a1d68a3d10
|
| 3 |
+
size 94636137
|
test/videos/RipVIS-027.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6fe57516a473544a30398dbc73b5be8442699625f698c5e47f8b3ed9093e6211
|
| 3 |
+
size 92996724
|
test/videos/RipVIS-038.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:943b58b0298c3d445390dabde6dd407f3cd0ab6d2e933fdccfeec640ab159056
|
| 3 |
+
size 181232564
|
test/videos/RipVIS-043.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6612c22b4dfe5ac1f47145e0048211716e8aa23c97a9ff55ce1d062deed110db
|
| 3 |
+
size 519175563
|
test/videos/RipVIS-047.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1890146ddab390e62f2be09dbbaa5f2318c2023eb42e1c72e4f6e4b2e6502f40
|
| 3 |
+
size 17617249
|
test/videos/RipVIS-048.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5c4d8d91518a2cff1ed909208d8095aa04147429810200c95416f2bf9a255b81
|
| 3 |
+
size 7607848
|
test/videos/RipVIS-055.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22655a85b17db9c86aec3764afa61a2c00a37164af4aa8b72fa931a8599b1d66
|
| 3 |
+
size 7195894
|
test/videos/RipVIS-073.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77b62e825c4be334bea010bc9fa2742338437a2b74b2cb24e9ca7c5972a688e1
|
| 3 |
+
size 2284842
|
test/videos/RipVIS-074.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:317475aaa5b8317dab1fdb7befc4d0b64d1b749a270b3b97388c3295ffb29a23
|
| 3 |
+
size 3326468
|
test/videos/RipVIS-078.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f7d64394821dcd2c68af696335f467b883fea2876312e922e77d19374a1337a
|
| 3 |
+
size 15464452
|
test/videos/RipVIS-081.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d2937de7a2bd2ae44a1a95e03355f5bfe16f7688bcada1f86b3ea2cb63a049e
|
| 3 |
+
size 14944545
|
test/videos/RipVIS-099.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75e886e28dd5f267e06b54e68eded776592c8e5e04d1d637124bf06b19a9767a
|
| 3 |
+
size 22105916
|
test/videos/RipVIS-113.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b347565c53dfa659ae34493c53d33bc2d8a5afbefb32d937bcf35cda60e8a7df
|
| 3 |
+
size 238729673
|
test/videos/RipVIS-114.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c483f5e21a7c6fc9c412d1a34574817eb779295f3c32d67eea7e743375996b0
|
| 3 |
+
size 69784781
|
test/videos/RipVIS-119.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63dc6932b0240a759223aaed018e82d0f36fac826913166112118ac0cbbe5220
|
| 3 |
+
size 68900391
|
test/videos/RipVIS-120.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5e7dff2383d4c038c970979d2f4b0cd9ecb21e849a7e6d927dc687a7bd94019
|
| 3 |
+
size 2299497
|
test/videos/RipVIS-125.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1f28df7c875b033906fda8cc8949356f735bbc83a5ab112cd5c81e400670eb56
|
| 3 |
+
size 5881187
|
test/videos/RipVIS-130.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1359f0db646fe3115d8da9836302f69749ebc84d3996508d6bdb45f6f9194e3f
|
| 3 |
+
size 54077722
|
test/videos/RipVIS-131.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b06882d4a2c9dd267c0602dc316e15d1b36f82b890756d2fdeb4bcf8f79bcf4
|
| 3 |
+
size 35432678
|
test/videos/RipVIS-132.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8fa95d5d5bc3249be65539be6766ef5a1fc4eda288166f8cece8e21b920d1e37
|
| 3 |
+
size 13101514
|
test/videos/RipVIS-138.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df6be4853c14212e0738dd0a02baffd912aa42f8ea2698709332562b0f88daf8
|
| 3 |
+
size 4712738
|
test/videos/RipVIS-139.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4473d95d2ffb5cef8c7827ba172db0a9198afb50eec90d6e7e89d5eabfb3804a
|
| 3 |
+
size 4218334
|
test/videos/RipVIS-142.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:097e50c6e8f31c7a3d5751d1f1e2185323e07edaad24891d8c26a15f62f7bd7c
|
| 3 |
+
size 54348170
|
test/videos/RipVIS-145.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:248c99088eb08c1e260b43e4d829d4631c0c302a96f14b2d037f9907a7265de8
|
| 3 |
+
size 138441036
|
test/videos/RipVIS-NR-001.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:415fd1381ee2c6cf24c566ac0bdd3ede013087aba86ad8c4cb81e26e141d215d
|
| 3 |
+
size 62998066
|
test/videos/RipVIS-NR-005.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95a07b5987024af832cbb54284b8738c4df319b77de5002b65d33370762361af
|
| 3 |
+
size 72549809
|
test/videos/RipVIS-NR-013.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d68b14a54ad81f0e121dd4b008d607fbd386688350e527e577a9a136d6a7f23
|
| 3 |
+
size 36636127
|
test/videos/RipVIS-NR-014.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a3dc36c1c79329d9fcf1833b3528a572d35f1cceb82d6941aca87beb7bb658a
|
| 3 |
+
size 35881166
|
test/videos/RipVIS-NR-021.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5af06bcd5ee6f75117f9e148ae035758a3667cdaccb7cf1cb8dbb9b57c6e4089
|
| 3 |
+
size 102016372
|
test/videos/RipVIS-NR-023.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa1acb7eec9d6a6a33d7e8992df6dbfb4a662ee6cacada73d79dfe4c8f0264cf
|
| 3 |
+
size 98800745
|
train/coco_annotations/additional_train_data.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
train/coco_annotations/train.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d925b30bf2718169dc221994d855397739b38615555bd7a0685841a069969fec
|
| 3 |
+
size 41419994
|
train/coco_annotations/train_with_additional_data.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e5b3ab97613607cad28ef148e8d60c20f88bc7505887081b901bcbcf1beba56b
|
| 3 |
+
size 46731720
|
train/sampled_images.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b86152bfe13b488e77eb45ee1bff0f81cf7cf2e393293985fd8f248aca84a862
|
| 3 |
+
size 6662772952
|
train/videos/RipVIS-003.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d26c4329520990dbd36afd2c97d5ceaebf4ce7bb91597db28ddc1a36fe53b925
|
| 3 |
+
size 2835712
|
train/videos/RipVIS-004.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:611de651caf24c002e634360510b6e2762392f6c8c9c50636a93001af6863dc8
|
| 3 |
+
size 18578119
|
train/videos/RipVIS-005.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f34f119bd59f66c3407288fc5879cd76468e62102d8793fb7039d0d7e11be25c
|
| 3 |
+
size 16414060
|
train/videos/RipVIS-006.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3af4f3b499079bf1bd26245eaf9bd8fdfe3039aa80e69cb0585e86c11b394e3
|
| 3 |
+
size 62829316
|
train/videos/RipVIS-010.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93f461c0a495f837a409b3e5b665a2d23795682a286c9fdbf43e65da98dbae35
|
| 3 |
+
size 7902569
|