""" Computes Precision, Recall, F1, F2. For this script, a confidence threshold variable is required to discard low-score predictions from the model """ # --- Configure here --- GROUND_TRUTH_JSON = "ground_truth.json" PREDICTIONS_JSON = "predictions.json" IOU_THRESHOLD = 0.5 # IoU threshold for a TP CONFIDENCE_THRESHOLD = 0.1 # ENSURE THAT YOU ADJUST IT ACCORDING TO THE MODEL YOU CHOOSE: predictions with score < this are ignored OUTPUT_PATH = "resuts.json" # set to None to skip saving # ---------------------- import json import numpy as np from pycocotools.coco import COCO from pycocotools import mask as maskUtils from sklearn.metrics import precision_score, recall_score, f1_score def _load_and_filter_predictions(predictions_json_path: str, conf_thr: float): """ Loads predictions and applies confidence filtering. Args: predictions_json_path (str): Path to predictions file. conf_thr (float): Minimum confidence score required to keep a prediction. Returns: list: Filtered list of prediction annotations. """ with open(predictions_json_path, "r") as f: data = json.load(f) # Normalize to list of annotations if isinstance(data, list): anns = data elif isinstance(data, dict) and "annotations" in data: anns = data["annotations"] else: raise ValueError("Predictions must be a list or a dict with an 'annotations' key.") # Keep only predictions above confidence threshold filtered = [] for ann in anns: score = ann.get("score", 1.0) # Default score if missing if score >= conf_thr: if "score" not in ann: ann = {**ann, "score": float(score)} filtered.append(ann) return filtered def compute_pr_f1_f2(ground_truth_json: str, predictions_json: str, iou_thr: float, conf_thr: float): """ Computes precision, recall, F1, and F2 scores. Steps: - Load ground truth annotations. - Load predictions and filter by confidence. - For each image, compute IoU between GT and predicted masks. - Match predictions to GT with highest IoU >= threshold. - Count TP, FP, FN to derive metrics. Args: ground_truth_json (str): Path to COCO-format ground truth file. predictions_json (str): Path to predictions file. iou_thr (float): IoU threshold to accept a prediction as True Positive. conf_thr (float): Confidence threshold for filtering predictions. Returns: dict: Metrics including precision, recall, F1, F2, and counts of TP, FP, FN. """ # Load ground truth gt_coco = COCO(ground_truth_json) # Load and filter predictions, then convert to COCO results filtered_preds = _load_and_filter_predictions(predictions_json, conf_thr) pred_coco = gt_coco.loadRes(filtered_preds) gt_img_ids = gt_coco.getImgIds() y_true = [] y_pred = [] # Evaluate image by image for img_id in gt_img_ids: gt_ann_ids = gt_coco.getAnnIds(imgIds=img_id) pred_ann_ids = pred_coco.getAnnIds(imgIds=img_id) gt_anns = gt_coco.loadAnns(gt_ann_ids) pred_anns = pred_coco.loadAnns(pred_ann_ids) # Convert GT and predictions to binary masks gt_masks = [maskUtils.decode(gt_coco.annToRLE(ann)) for ann in gt_anns] pred_masks = [maskUtils.decode(pred_coco.annToRLE(ann)) for ann in pred_anns] matched_gt = set() for pred_mask in pred_masks: best_iou = 0.0 best_gt_idx = None # Find best IoU match with ground truth masks for i, gt_mask in enumerate(gt_masks): intersection = np.logical_and(gt_mask, pred_mask).sum() union = np.logical_or(gt_mask, pred_mask).sum() iou = (intersection / union) if union > 0 else 0.0 if iou > best_iou: best_iou = iou best_gt_idx = i if best_iou >= iou_thr and best_gt_idx not in matched_gt: # True Positive y_true.append(1) y_pred.append(1) matched_gt.add(best_gt_idx) else: # False Positive y_true.append(0) y_pred.append(1) # Unmatched ground truth = False Negatives for i in range(len(gt_masks)): if i not in matched_gt: y_true.append(1) y_pred.append(0) # Compute metrics precision = precision_score(y_true, y_pred, zero_division=1) recall = recall_score(y_true, y_pred, zero_division=1) f1 = f1_score(y_true, y_pred, zero_division=1) f2 = (5 * precision * recall) / (4 * precision + recall) if (precision + recall) > 0 else 0.0 # Count TP, FP, FN tp = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 1) fp = sum(1 for t, p in zip(y_true, y_pred) if t == 0 and p == 1) fn = sum(1 for t, p in zip(y_true, y_pred) if t == 1 and p == 0) results = { "precision": float(precision), "recall": float(recall), "f1": float(f1), "f2": float(f2), # Uncomment to print the number of fp, tp, fn as well # "tp": int(tp), # "fp": int(fp), # "fn": int(fn), } return results if __name__ == "__main__": # Run evaluation and print results scores = compute_pr_f1_f2( GROUND_TRUTH_JSON, PREDICTIONS_JSON, IOU_THRESHOLD, CONFIDENCE_THRESHOLD, ) print(json.dumps(scores, indent=2)) # Optionally save results to JSON if OUTPUT_PATH: with open(OUTPUT_PATH, "w") as f: json.dump(scores, f, indent=2)