Datasets:
Upload: Complete folder into assets directory
Browse files- README.md +265 -0
- assets/major_logo.png +3 -0
- assets/taco.png +3 -0
- collection.py +155 -0
README.md
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license:
|
| 3 |
+
- apache-2.0 # licenses vary per upstream Major TOM datasets (S2/S1/DEM/embeddings)
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
+
tags:
|
| 7 |
+
- remote-sensing
|
| 8 |
+
- earth-observation
|
| 9 |
+
- sentinel-2
|
| 10 |
+
- sentinel-1
|
| 11 |
+
- dem
|
| 12 |
+
- embeddings
|
| 13 |
+
- multimodal
|
| 14 |
+
- deep-learning
|
| 15 |
+
- taco
|
| 16 |
+
pretty_name: Major TOM Core-Combo
|
| 17 |
+
viewer: false
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 260px; margin: auto; background-color: #f9f9f9;">
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+

|
| 24 |
+
|
| 25 |
+
<b><p>This dataset follows the TACO specification.</p></b>
|
| 26 |
+
|
| 27 |
+
</div>
|
| 28 |
+
|
| 29 |
+
<br>
|
| 30 |
+
|
| 31 |
+
# Major TOM Core-Combo (TACO)
|
| 32 |
+
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
A **TACO-formatted** multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Description
|
| 40 |
+
|
| 41 |
+
### Dataset
|
| 42 |
+
|
| 43 |
+
This dataset packages co-registered patches drawn from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
|
| 44 |
+
|
| 45 |
+
**What each sample contains:**
|
| 46 |
+
- **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
|
| 47 |
+
- **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
|
| 48 |
+
- **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
|
| 49 |
+
- **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
|
| 50 |
+
- **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
|
| 51 |
+
|
| 52 |
+
The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
### Sensors used
|
| 57 |
+
|
| 58 |
+
- **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
|
| 59 |
+
- **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
|
| 60 |
+
- **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
|
| 61 |
+
- **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
## Creators
|
| 65 |
+
|
| 66 |
+
- ESA Φ-lab & collaborators
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
## Original datasets
|
| 70 |
+
|
| 71 |
+
See the official **Major TOM** organization for coverage, counts and updates:
|
| 72 |
+
|
| 73 |
+
- **Major TOM organization overview (Hugging Face)**
|
| 74 |
+
- **Core datasets**: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM
|
| 75 |
+
- **Embedding releases**: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings
|
| 76 |
+
- **Spec & paper**: “Major TOM: Expandable Datasets for Earth Observation” (arXiv) and the IGARSS 2024 citation (see Publications)
|
| 77 |
+
|
| 78 |
+
> Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
## TACO dataset
|
| 82 |
+
|
| 83 |
+
**Construction**
|
| 84 |
+
- **Grid & tiling**: adopt Major TOM’s global grid; fixed-size **512 × 512 px @ 10 m** (~5.12 km) windows keyed by grid cell.
|
| 85 |
+
- **Temporal pairing**: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring **clear-sky** S2 for optical stacks.
|
| 86 |
+
- **Embeddings**: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.
|
| 87 |
+
- **Lineage metadata**: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.
|
| 88 |
+
|
| 89 |
+
**Default patch geometry**
|
| 90 |
+
- **Spatial extent**: 5160 m × 5160 m
|
| 91 |
+
- **S2 tensor (bands)**: 13 (B1–B12 incl. B10) → **512 × 512 × 13**
|
| 92 |
+
- **S1 tensor (VV/VH)**: 2 (plus optional angle) → **512 × 512 × 2–3**
|
| 93 |
+
- **DEM tensor**: 1 (or +slope/aspect) → **512 × 512 × 1–3**
|
| 94 |
+
- **Embeddings**: 1..N vectors stored as sidecars (per-patch, not per-pixel)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
### Spectral Bands (S2 MSI)
|
| 98 |
+
|
| 99 |
+
We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
|
| 100 |
+
|
| 101 |
+
| idx | Band | Name | Central λ | Nominal Res. | Notes |
|
| 102 |
+
|:---:|:----:|---------------------------|:---------:|:------------:|------|
|
| 103 |
+
| 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
|
| 104 |
+
| 1 | B2 | Blue | 492 nm | 10 m | |
|
| 105 |
+
| 2 | B3 | Green | 560 nm | 10 m | |
|
| 106 |
+
| 3 | B4 | Red | 665 nm | 10 m | |
|
| 107 |
+
| 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
|
| 108 |
+
| 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
|
| 109 |
+
| 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
|
| 110 |
+
| 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
|
| 111 |
+
| 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
|
| 112 |
+
| 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
|
| 113 |
+
| 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
|
| 114 |
+
| 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
|
| 115 |
+
| 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## 🔄 Reproducible Example
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
import tacoreader
|
| 123 |
+
import rasterio as rio
|
| 124 |
+
import numpy as np
|
| 125 |
+
import matplotlib.pyplot as plt
|
| 126 |
+
|
| 127 |
+
# Load the dataset (replace with the final registry name when published)
|
| 128 |
+
ds = tacoreader.load("tacofoundation:majortom-core-combo")
|
| 129 |
+
|
| 130 |
+
# Read a sample
|
| 131 |
+
i = 0
|
| 132 |
+
row = ds.read(i)
|
| 133 |
+
row_id = ds.iloc[i]["tortilla:id"]
|
| 134 |
+
|
| 135 |
+
s2_path = row.read("S2_L2A") # GeoTIFF
|
| 136 |
+
s1_path = row.read("S1_RTC") # GeoTIFF
|
| 137 |
+
dem_path = row.read("DEM") # GeoTIFF
|
| 138 |
+
# emb_path = row.read("EMB") # Optional embeddings (Parquet/NPY)
|
| 139 |
+
|
| 140 |
+
with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
|
| 141 |
+
# Simple S2 RGB (B4,B3,B2)
|
| 142 |
+
rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
|
| 143 |
+
rgb = np.transpose(rgb, (1,2,0))
|
| 144 |
+
rgb_norm = np.clip(rgb / 2000.0, 0, 1)
|
| 145 |
+
|
| 146 |
+
vv = s1.read(1)
|
| 147 |
+
dem_elev = dem.read(1)
|
| 148 |
+
|
| 149 |
+
fig, ax = plt.subplots(1,3, figsize=(13,4.2))
|
| 150 |
+
ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB — {row_id}"); ax[0].axis("off")
|
| 151 |
+
ax[1].imshow(vv); ax[1].set_title("S1 VV"); ax[1].axis("off")
|
| 152 |
+
ax[2].imshow(dem_elev); ax[2].set_title("DEM"); ax[2].axis("off")
|
| 153 |
+
plt.tight_layout(); plt.show()
|
| 154 |
+
```
|
| 155 |
+
|
| 156 |
+
<center>
|
| 157 |
+
<img src="assets/majortom_combo_example.png" alt="example" width="100%"/>
|
| 158 |
+
</center>
|
| 159 |
+
|
| 160 |
+
## 🛰️ Sensor Information
|
| 161 |
+
|
| 162 |
+
Sources in this dataset: **sentinel2msi**, **sentinel1-rtc**, **cop-dem30**, and **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).
|
| 163 |
+
|
| 164 |
+
## 🎯 Tasks
|
| 165 |
+
|
| 166 |
+
General-purpose: **self-supervised pretraining**, **representation learning**, **multimodal fusion**, **semantic segmentation**, **change detection**, **classification**, **retrieval**.
|
| 167 |
+
|
| 168 |
+
## 📂 Original Data Repositories (Upstream)
|
| 169 |
+
|
| 170 |
+
* Major TOM organization [page](https://huggingface.co/Major-TOM).
|
| 171 |
+
|
| 172 |
+
## 💬 Discussion
|
| 173 |
+
|
| 174 |
+
Use the Major TOM org discussions/Spaces and the **satellite-image-deep-learning Discord** (Major TOM channels) to coordinate contributions and combinations.
|
| 175 |
+
|
| 176 |
+
## 🔀 Split Strategy
|
| 177 |
+
|
| 178 |
+
All train.
|
| 179 |
+
|
| 180 |
+
## 📚 Scientific Publications
|
| 181 |
+
|
| 182 |
+
### Publication 01
|
| 183 |
+
|
| 184 |
+
* **arXiv**: *Major TOM: Expandable Datasets for Earth Observation* (Francis & Czerkawski, 2024).
|
| 185 |
+
**BibTeX**:
|
| 186 |
+
|
| 187 |
+
```bibtex
|
| 188 |
+
@article{MajorTOM2024,
|
| 189 |
+
author = {Francis, Alistair and Czerkawski, Mikolaj},
|
| 190 |
+
title = {Major TOM: Expandable Datasets for Earth Observation},
|
| 191 |
+
journal = {arXiv preprint arXiv:2402.12095},
|
| 192 |
+
year = {2024},
|
| 193 |
+
doi = {10.1109/IGARSS53475.2024.10640760}
|
| 194 |
+
}
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
### Publication 02
|
| 199 |
+
|
| 200 |
+
* **arXiv (2024)**: *Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space*.
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
```bibtex
|
| 204 |
+
@article{czerkawski2024global,
|
| 205 |
+
title={Global and dense embeddings of earth: Major tom floating in the latent space},
|
| 206 |
+
author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
|
| 207 |
+
journal={arXiv preprint arXiv:2412.05600},
|
| 208 |
+
year={2024},
|
| 209 |
+
doi= {10.48550/arXiv.2412.05600}
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
```
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
## 🤝 Data Providers
|
| 216 |
+
|
| 217 |
+
| **Name** | **Role** | **URL** |
|
| 218 |
+
| :---------------------------- | :--------------------- | :------------------------------------------------------------------- |
|
| 219 |
+
| ESA Φ-lab | producer / coordinator | [https://philab.esa.int/](https://philab.esa.int/) |
|
| 220 |
+
| Major TOM (HF) | publisher (org) | [https://huggingface.co/Major-TOM](https://huggingface.co/Major-TOM) |
|
| 221 |
+
| CloudFerro (embeddings infra) | collaborator | [https://cloudferro.com/](https://cloudferro.com/) |
|
| 222 |
+
|
| 223 |
+
---
|
| 224 |
+
|
| 225 |
+
## 🧑🔬 Curators
|
| 226 |
+
|
| 227 |
+
| **Name** | **Organization** | **URL** |
|
| 228 |
+
| :-------------- | :------------------------ | :------------------------------------------------------------------------------------------------- |
|
| 229 |
+
| Julio Contreras | Image & Signal Processing | [https://juliocontrerash.github.io/](https://juliocontrerash.github.io/) |
|
| 230 |
+
| TACO Foundation | Curation (TACO format) | [https://huggingface.co/datasets/tacofoundation/](https://huggingface.co/datasets/tacofoundation/) |
|
| 231 |
+
|
| 232 |
+
---
|
| 233 |
+
|
| 234 |
+
## 🎞 Official Image Datasets (from Major TOM)
|
| 235 |
+
|
| 236 |
+
| Dataset | Modality | Number of Patches | Sensing Type | Comments |
|
| 237 |
+
| ---------- | ------------------- | ----------------- | --------------------- | --------------- |
|
| 238 |
+
| Core-S2L2A | Sentinel-2 Level 2A | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
|
| 239 |
+
| Core-S2L1C | Sentinel-2 Level 1C | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
|
| 240 |
+
| Core-S1RTC | Sentinel-1 RTC | 1,469,955 | SAR | Global (≈16 TB) |
|
| 241 |
+
| Core-DEM | Copernicus DEM 30 | 1,837,843 | Digital Surface Model | Global (≈1 TB) |
|
| 242 |
+
|
| 243 |
+
---
|
| 244 |
+
|
| 245 |
+
## 📊 Official Embedding Datasets (from Major TOM)
|
| 246 |
+
|
| 247 |
+
| Dataset | Modality | # Embeddings | Sensing Type | Source Dataset | Source Model | Size |
|
| 248 |
+
| -------------------------- | -------------------- | -------------- | -------------- | -------------- | --------------------- | -------- |
|
| 249 |
+
| Core-S2L1C-SSL4EO | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DINO | 252.9 GB |
|
| 250 |
+
| Core-S1RTC-SSL4EO | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-MOCO | 332.5 GB |
|
| 251 |
+
| Core-S2RGB-DINOv2 | Sentinel-2 L2A (RGB) | 56,147,150 | True Colour | Core-S2L2A | DINOv2 | 223.1 GB |
|
| 252 |
+
| Core-S2RGB-SigLIP | Sentinel-2 L2A (RGB) | 20,212,974 | True Colour | Core-S2L2A | SigLIP-SO400M-384 | 41.3 GB |
|
| 253 |
+
| Core-S2L1C-DeCUR | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DeCUR | 252.9 GB |
|
| 254 |
+
| Core-S1RTC-DeCUR | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-DeCUR | 332.5 GB |
|
| 255 |
+
| Core-S2L2A-MMEarth | Sentinel-2 L2A (MSI) | 39,727,477,454 | Multi-Spectral | Core-S2L2A | MMEarth | 5080 GB |
|
| 256 |
+
| Core-AlphaEarth-Embeddings | Multimodal | 71,276,453,136 | Multiple | AlphaEarth | AlphaEarth | 6070 GB |
|
| 257 |
+
|
| 258 |
+
---
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
**Key sources for facts & tables:** Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Φ-lab’s post on embedding expansions. ([huggingface.co][1], [arxiv.org][2], [philab.esa.int][3])
|
| 262 |
+
|
| 263 |
+
[1]: https://huggingface.co/Major-TOM "Major-TOM (Major TOM)"
|
| 264 |
+
[2]: https://arxiv.org/abs/2402.12095 "Major TOM: Expandable Datasets for Earth Observation"
|
| 265 |
+
[3]: https://philab.esa.int/new-ai-powered-insights-with-the-latest-major-tom-embeddings/ "New AI-powered insights with the latest Major TOM embeddings"
|
assets/major_logo.png
ADDED
|
Git LFS Details
|
assets/taco.png
ADDED
|
Git LFS Details
|
collection.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
description = """
|
| 2 |
+
## Description
|
| 3 |
+
|
| 4 |
+
### Dataset
|
| 5 |
+
|
| 6 |
+
A TACO-formatted multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
|
| 7 |
+
|
| 8 |
+
This dataset assembles co-registered patches from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM provides a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
|
| 9 |
+
|
| 10 |
+
**What each sample contains:**
|
| 11 |
+
- **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
|
| 12 |
+
- **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
|
| 13 |
+
- **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
|
| 14 |
+
- **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
|
| 15 |
+
- **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
|
| 16 |
+
|
| 17 |
+
The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
|
| 18 |
+
|
| 19 |
+
### Sensors used
|
| 20 |
+
|
| 21 |
+
- **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
|
| 22 |
+
- **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
|
| 23 |
+
- **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
|
| 24 |
+
- **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
|
| 25 |
+
|
| 26 |
+
### Spectral Bands (S2 MSI)
|
| 27 |
+
|
| 28 |
+
We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
|
| 29 |
+
|
| 30 |
+
| idx | Band | Name | Central λ | Nominal Res. | Notes |
|
| 31 |
+
|:---:|:----:|---------------------------|:---------:|:------------:|------|
|
| 32 |
+
| 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
|
| 33 |
+
| 1 | B2 | Blue | 492 nm | 10 m | |
|
| 34 |
+
| 2 | B3 | Green | 560 nm | 10 m | |
|
| 35 |
+
| 3 | B4 | Red | 665 nm | 10 m | |
|
| 36 |
+
| 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
|
| 37 |
+
| 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
|
| 38 |
+
| 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
|
| 39 |
+
| 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
|
| 40 |
+
| 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
|
| 41 |
+
| 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
|
| 42 |
+
| 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
|
| 43 |
+
| 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
|
| 44 |
+
| 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
bibtex_1 = """
|
| 48 |
+
@article{MajorTOM2024,
|
| 49 |
+
author = {Francis, Alistair and Czerkawski, Mikolaj},
|
| 50 |
+
title = {Major TOM: Expandable Datasets for Earth Observation},
|
| 51 |
+
journal = {arXiv preprint arXiv:2402.12095},
|
| 52 |
+
year = {2024},
|
| 53 |
+
doi = {10.1109/IGARSS53475.2024.10640760}
|
| 54 |
+
}
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
bibtex_2 = """
|
| 59 |
+
@article{czerkawski2024global,
|
| 60 |
+
title = {Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space},
|
| 61 |
+
author = {Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J. and others},
|
| 62 |
+
journal = {arXiv preprint arXiv:2412.05600},
|
| 63 |
+
year = {2024},
|
| 64 |
+
doi = {10.48550/arXiv.2412.05600}
|
| 65 |
+
}
|
| 66 |
+
"""
|
| 67 |
+
|
| 68 |
+
# Create a collection object with metadata for the dataset
|
| 69 |
+
collection_object = tacotoolbox.datamodel.Collection(
|
| 70 |
+
id="majortom-core-combo",
|
| 71 |
+
title="Major TOM Core-Combo (TACO)",
|
| 72 |
+
dataset_version="1.0.0",
|
| 73 |
+
description=description,
|
| 74 |
+
licenses=["refer-to-upstream"],
|
| 75 |
+
extent={
|
| 76 |
+
"spatial": [[-180.0, -90.0, 180.0, 90.0]], # global coverage (land-focused per upstream)
|
| 77 |
+
"temporal": [["2014-01-01T00:00:00Z", "2025-09-09T00:00:00Z"]]
|
| 78 |
+
},
|
| 79 |
+
providers=[
|
| 80 |
+
{
|
| 81 |
+
"name": "ESA Φ-lab / Major TOM (Hugging Face)",
|
| 82 |
+
"roles": ["producer", "publisher"],
|
| 83 |
+
"links": [
|
| 84 |
+
{"href": "https://huggingface.co/Major-TOM", "rel": "source", "type": "text/html"}
|
| 85 |
+
],
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"name": "TACO Foundation",
|
| 89 |
+
"roles": ["curator"],
|
| 90 |
+
"links": [
|
| 91 |
+
{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}
|
| 92 |
+
],
|
| 93 |
+
}
|
| 94 |
+
],
|
| 95 |
+
keywords=["remote-sensing", "earth-observation", "multimodal", "deep-learning",
|
| 96 |
+
"sentinel-2", "sentinel-1", "dem", "embeddings", "taco"],
|
| 97 |
+
task="multimodal-learning",
|
| 98 |
+
curators=[
|
| 99 |
+
{
|
| 100 |
+
"name": "Julio Contreras",
|
| 101 |
+
"organization": "Image & Signal Processing",
|
| 102 |
+
"email": ["[email protected]"],
|
| 103 |
+
"links": [{"href": "https://juliocontrerash.github.io/", "rel": "homepage", "type": "text/html"}],
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"name": "TACO Foundation",
|
| 107 |
+
"organization": "TACO",
|
| 108 |
+
"links": [{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}],
|
| 109 |
+
}
|
| 110 |
+
],
|
| 111 |
+
split_strategy="all-train",
|
| 112 |
+
discuss_link={
|
| 113 |
+
"href": "https://huggingface.co/Major-TOM",
|
| 114 |
+
"rel": "discussion",
|
| 115 |
+
"type": "text/html"
|
| 116 |
+
},
|
| 117 |
+
raw_link={
|
| 118 |
+
"href": "https://huggingface.co/Major-TOM",
|
| 119 |
+
"rel": "source",
|
| 120 |
+
"type": "text/html"
|
| 121 |
+
},
|
| 122 |
+
# Optional domain-specific metadata (mirrors your README sections)
|
| 123 |
+
optical_data={"sensor": "sentinel2msi"},
|
| 124 |
+
radar_data={"sensor": "sentinel1-rtc"},
|
| 125 |
+
elevation_data={"sensor": "cop-dem30"},
|
| 126 |
+
embeddings={
|
| 127 |
+
"families": ["SSL4EO", "DINOv2", "SigLIP", "DeCUR", "MMEarth", "AlphaEarth"],
|
| 128 |
+
"storage": "per-patch vectors (Parquet/NPY sidecars)"
|
| 129 |
+
},
|
| 130 |
+
taco_spec={
|
| 131 |
+
"grid": "Major TOM global grid",
|
| 132 |
+
"patch_size_px": [512, 512],
|
| 133 |
+
"resolution_m": 10,
|
| 134 |
+
"spatial_extent_m": [5160, 5160],
|
| 135 |
+
"assets": {
|
| 136 |
+
"S2_L2A": "GeoTIFF, 13 bands (B1–B12 incl. B10) @10m",
|
| 137 |
+
"S1_RTC": "GeoTIFF, 2–3 bands (VV, VH, optional angle) @10m",
|
| 138 |
+
"DEM": "GeoTIFF, 1–3 bands (elevation, optional slope/aspect) @10m",
|
| 139 |
+
"EMB": "Optional per-patch embeddings (Parquet/NPY)"
|
| 140 |
+
}
|
| 141 |
+
},
|
| 142 |
+
labels={
|
| 143 |
+
"label_classes": [],
|
| 144 |
+
"label_description": "No labeled classes. Designed for representation learning and multimodal tasks."
|
| 145 |
+
},
|
| 146 |
+
scientific={
|
| 147 |
+
"doi": "to-be-assigned",
|
| 148 |
+
"citation": "Please cite the Major TOM paper(s) and the IGARSS 2024 proceeding.",
|
| 149 |
+
"summary": "Major TOM Core-Combo reorganizes upstream Major TOM sources (S2/S1/DEM and embeddings) into aligned TACO tortillas for fast, consistent access.",
|
| 150 |
+
"publications": [
|
| 151 |
+
{"doi": "10.48550/arXiv.2402.12095", "citation": bibtex_1, "summary": "arXiv paper introducing the Major TOM framework."},
|
| 152 |
+
{"doi": "10.48550/arXiv.2412.05600", "citation": bibtex_2, "summary": "arXiv on global/dense embeddings aligned to Major TOM grid."}
|
| 153 |
+
]
|
| 154 |
+
}
|
| 155 |
+
)
|