JulioContrerasH commited on
Commit
27e526d
·
verified ·
1 Parent(s): 15799db

Upload: Complete folder into assets directory

Browse files
Files changed (4) hide show
  1. README.md +265 -0
  2. assets/major_logo.png +3 -0
  3. assets/taco.png +3 -0
  4. collection.py +155 -0
README.md ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license:
3
+ - apache-2.0 # licenses vary per upstream Major TOM datasets (S2/S1/DEM/embeddings)
4
+ language:
5
+ - en
6
+ tags:
7
+ - remote-sensing
8
+ - earth-observation
9
+ - sentinel-2
10
+ - sentinel-1
11
+ - dem
12
+ - embeddings
13
+ - multimodal
14
+ - deep-learning
15
+ - taco
16
+ pretty_name: Major TOM Core-Combo
17
+ viewer: false
18
+ ---
19
+
20
+ <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 260px; margin: auto; background-color: #f9f9f9;">
21
+
22
+
23
+ ![Dataset Image](assets/taco.png)
24
+
25
+ <b><p>This dataset follows the TACO specification.</p></b>
26
+
27
+ </div>
28
+
29
+ <br>
30
+
31
+ # Major TOM Core-Combo (TACO)
32
+
33
+ ![Dataset Image](assets/major_logo.png)
34
+
35
+ A **TACO-formatted** multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
36
+
37
+
38
+
39
+ ## Description
40
+
41
+ ### Dataset
42
+
43
+ This dataset packages co-registered patches drawn from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
44
+
45
+ **What each sample contains:**
46
+ - **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
47
+ - **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
48
+ - **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
49
+ - **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
50
+ - **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
51
+
52
+ The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
53
+
54
+
55
+
56
+ ### Sensors used
57
+
58
+ - **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
59
+ - **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
60
+ - **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
61
+ - **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
62
+
63
+
64
+ ## Creators
65
+
66
+ - ESA Φ-lab & collaborators
67
+
68
+
69
+ ## Original datasets
70
+
71
+ See the official **Major TOM** organization for coverage, counts and updates:
72
+
73
+ - **Major TOM organization overview (Hugging Face)**
74
+ - **Core datasets**: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM
75
+ - **Embedding releases**: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings
76
+ - **Spec & paper**: “Major TOM: Expandable Datasets for Earth Observation” (arXiv) and the IGARSS 2024 citation (see Publications)
77
+
78
+ > Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.
79
+
80
+
81
+ ## TACO dataset
82
+
83
+ **Construction**
84
+ - **Grid & tiling**: adopt Major TOM’s global grid; fixed-size **512 × 512 px @ 10 m** (~5.12 km) windows keyed by grid cell.
85
+ - **Temporal pairing**: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring **clear-sky** S2 for optical stacks.
86
+ - **Embeddings**: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.
87
+ - **Lineage metadata**: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.
88
+
89
+ **Default patch geometry**
90
+ - **Spatial extent**: 5160 m × 5160 m
91
+ - **S2 tensor (bands)**: 13 (B1–B12 incl. B10) → **512 × 512 × 13**
92
+ - **S1 tensor (VV/VH)**: 2 (plus optional angle) → **512 × 512 × 2–3**
93
+ - **DEM tensor**: 1 (or +slope/aspect) → **512 × 512 × 1–3**
94
+ - **Embeddings**: 1..N vectors stored as sidecars (per-patch, not per-pixel)
95
+
96
+
97
+ ### Spectral Bands (S2 MSI)
98
+
99
+ We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
100
+
101
+ | idx | Band | Name | Central λ | Nominal Res. | Notes |
102
+ |:---:|:----:|---------------------------|:---------:|:------------:|------|
103
+ | 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
104
+ | 1 | B2 | Blue | 492 nm | 10 m | |
105
+ | 2 | B3 | Green | 560 nm | 10 m | |
106
+ | 3 | B4 | Red | 665 nm | 10 m | |
107
+ | 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
108
+ | 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
109
+ | 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
110
+ | 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
111
+ | 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
112
+ | 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
113
+ | 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
114
+ | 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
115
+ | 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
116
+
117
+ ---
118
+
119
+ ## 🔄 Reproducible Example
120
+
121
+ ```python
122
+ import tacoreader
123
+ import rasterio as rio
124
+ import numpy as np
125
+ import matplotlib.pyplot as plt
126
+
127
+ # Load the dataset (replace with the final registry name when published)
128
+ ds = tacoreader.load("tacofoundation:majortom-core-combo")
129
+
130
+ # Read a sample
131
+ i = 0
132
+ row = ds.read(i)
133
+ row_id = ds.iloc[i]["tortilla:id"]
134
+
135
+ s2_path = row.read("S2_L2A") # GeoTIFF
136
+ s1_path = row.read("S1_RTC") # GeoTIFF
137
+ dem_path = row.read("DEM") # GeoTIFF
138
+ # emb_path = row.read("EMB") # Optional embeddings (Parquet/NPY)
139
+
140
+ with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
141
+ # Simple S2 RGB (B4,B3,B2)
142
+ rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
143
+ rgb = np.transpose(rgb, (1,2,0))
144
+ rgb_norm = np.clip(rgb / 2000.0, 0, 1)
145
+
146
+ vv = s1.read(1)
147
+ dem_elev = dem.read(1)
148
+
149
+ fig, ax = plt.subplots(1,3, figsize=(13,4.2))
150
+ ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB — {row_id}"); ax[0].axis("off")
151
+ ax[1].imshow(vv); ax[1].set_title("S1 VV"); ax[1].axis("off")
152
+ ax[2].imshow(dem_elev); ax[2].set_title("DEM"); ax[2].axis("off")
153
+ plt.tight_layout(); plt.show()
154
+ ```
155
+
156
+ <center>
157
+ <img src="assets/majortom_combo_example.png" alt="example" width="100%"/>
158
+ </center>
159
+
160
+ ## 🛰️ Sensor Information
161
+
162
+ Sources in this dataset: **sentinel2msi**, **sentinel1-rtc**, **cop-dem30**, and **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).
163
+
164
+ ## 🎯 Tasks
165
+
166
+ General-purpose: **self-supervised pretraining**, **representation learning**, **multimodal fusion**, **semantic segmentation**, **change detection**, **classification**, **retrieval**.
167
+
168
+ ## 📂 Original Data Repositories (Upstream)
169
+
170
+ * Major TOM organization [page](https://huggingface.co/Major-TOM).
171
+
172
+ ## 💬 Discussion
173
+
174
+ Use the Major TOM org discussions/Spaces and the **satellite-image-deep-learning Discord** (Major TOM channels) to coordinate contributions and combinations.
175
+
176
+ ## 🔀 Split Strategy
177
+
178
+ All train.
179
+
180
+ ## 📚 Scientific Publications
181
+
182
+ ### Publication 01
183
+
184
+ * **arXiv**: *Major TOM: Expandable Datasets for Earth Observation* (Francis & Czerkawski, 2024).
185
+ **BibTeX**:
186
+
187
+ ```bibtex
188
+ @article{MajorTOM2024,
189
+ author = {Francis, Alistair and Czerkawski, Mikolaj},
190
+ title = {Major TOM: Expandable Datasets for Earth Observation},
191
+ journal = {arXiv preprint arXiv:2402.12095},
192
+ year = {2024},
193
+ doi = {10.1109/IGARSS53475.2024.10640760}
194
+ }
195
+ ```
196
+
197
+
198
+ ### Publication 02
199
+
200
+ * **arXiv (2024)**: *Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space*.
201
+
202
+
203
+ ```bibtex
204
+ @article{czerkawski2024global,
205
+ title={Global and dense embeddings of earth: Major tom floating in the latent space},
206
+ author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
207
+ journal={arXiv preprint arXiv:2412.05600},
208
+ year={2024},
209
+ doi= {10.48550/arXiv.2412.05600}
210
+ }
211
+
212
+ ```
213
+
214
+
215
+ ## 🤝 Data Providers
216
+
217
+ | **Name** | **Role** | **URL** |
218
+ | :---------------------------- | :--------------------- | :------------------------------------------------------------------- |
219
+ | ESA Φ-lab | producer / coordinator | [https://philab.esa.int/](https://philab.esa.int/) |
220
+ | Major TOM (HF) | publisher (org) | [https://huggingface.co/Major-TOM](https://huggingface.co/Major-TOM) |
221
+ | CloudFerro (embeddings infra) | collaborator | [https://cloudferro.com/](https://cloudferro.com/) |
222
+
223
+ ---
224
+
225
+ ## 🧑‍🔬 Curators
226
+
227
+ | **Name** | **Organization** | **URL** |
228
+ | :-------------- | :------------------------ | :------------------------------------------------------------------------------------------------- |
229
+ | Julio Contreras | Image & Signal Processing | [https://juliocontrerash.github.io/](https://juliocontrerash.github.io/) |
230
+ | TACO Foundation | Curation (TACO format) | [https://huggingface.co/datasets/tacofoundation/](https://huggingface.co/datasets/tacofoundation/) |
231
+
232
+ ---
233
+
234
+ ## 🎞 Official Image Datasets (from Major TOM)
235
+
236
+ | Dataset | Modality | Number of Patches | Sensing Type | Comments |
237
+ | ---------- | ------------------- | ----------------- | --------------------- | --------------- |
238
+ | Core-S2L2A | Sentinel-2 Level 2A | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
239
+ | Core-S2L1C | Sentinel-2 Level 1C | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
240
+ | Core-S1RTC | Sentinel-1 RTC | 1,469,955 | SAR | Global (≈16 TB) |
241
+ | Core-DEM | Copernicus DEM 30 | 1,837,843 | Digital Surface Model | Global (≈1 TB) |
242
+
243
+ ---
244
+
245
+ ## 📊 Official Embedding Datasets (from Major TOM)
246
+
247
+ | Dataset | Modality | # Embeddings | Sensing Type | Source Dataset | Source Model | Size |
248
+ | -------------------------- | -------------------- | -------------- | -------------- | -------------- | --------------------- | -------- |
249
+ | Core-S2L1C-SSL4EO | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DINO | 252.9 GB |
250
+ | Core-S1RTC-SSL4EO | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-MOCO | 332.5 GB |
251
+ | Core-S2RGB-DINOv2 | Sentinel-2 L2A (RGB) | 56,147,150 | True Colour | Core-S2L2A | DINOv2 | 223.1 GB |
252
+ | Core-S2RGB-SigLIP | Sentinel-2 L2A (RGB) | 20,212,974 | True Colour | Core-S2L2A | SigLIP-SO400M-384 | 41.3 GB |
253
+ | Core-S2L1C-DeCUR | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DeCUR | 252.9 GB |
254
+ | Core-S1RTC-DeCUR | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-DeCUR | 332.5 GB |
255
+ | Core-S2L2A-MMEarth | Sentinel-2 L2A (MSI) | 39,727,477,454 | Multi-Spectral | Core-S2L2A | MMEarth | 5080 GB |
256
+ | Core-AlphaEarth-Embeddings | Multimodal | 71,276,453,136 | Multiple | AlphaEarth | AlphaEarth | 6070 GB |
257
+
258
+ ---
259
+
260
+
261
+ **Key sources for facts & tables:** Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Φ-lab’s post on embedding expansions. ([huggingface.co][1], [arxiv.org][2], [philab.esa.int][3])
262
+
263
+ [1]: https://huggingface.co/Major-TOM "Major-TOM (Major TOM)"
264
+ [2]: https://arxiv.org/abs/2402.12095 "Major TOM: Expandable Datasets for Earth Observation"
265
+ [3]: https://philab.esa.int/new-ai-powered-insights-with-the-latest-major-tom-embeddings/ "New AI-powered insights with the latest Major TOM embeddings"
assets/major_logo.png ADDED

Git LFS Details

  • SHA256: 28b530900f27df5aa7ee2d7aafe82fcb37538711048c183465046fa7d04b54f3
  • Pointer size: 130 Bytes
  • Size of remote file: 32.3 kB
assets/taco.png ADDED

Git LFS Details

  • SHA256: 1a366084d37e267d37523c1af429982fc9c218aa1ea45e75e7324be98c526aea
  • Pointer size: 130 Bytes
  • Size of remote file: 61.4 kB
collection.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ description = """
2
+ ## Description
3
+
4
+ ### Dataset
5
+
6
+ A TACO-formatted multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
7
+
8
+ This dataset assembles co-registered patches from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM provides a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
9
+
10
+ **What each sample contains:**
11
+ - **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
12
+ - **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
13
+ - **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
14
+ - **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
15
+ - **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
16
+
17
+ The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
18
+
19
+ ### Sensors used
20
+
21
+ - **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
22
+ - **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
23
+ - **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
24
+ - **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
25
+
26
+ ### Spectral Bands (S2 MSI)
27
+
28
+ We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
29
+
30
+ | idx | Band | Name | Central λ | Nominal Res. | Notes |
31
+ |:---:|:----:|---------------------------|:---------:|:------------:|------|
32
+ | 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
33
+ | 1 | B2 | Blue | 492 nm | 10 m | |
34
+ | 2 | B3 | Green | 560 nm | 10 m | |
35
+ | 3 | B4 | Red | 665 nm | 10 m | |
36
+ | 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
37
+ | 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
38
+ | 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
39
+ | 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
40
+ | 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
41
+ | 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
42
+ | 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
43
+ | 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
44
+ | 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
45
+ """
46
+
47
+ bibtex_1 = """
48
+ @article{MajorTOM2024,
49
+ author = {Francis, Alistair and Czerkawski, Mikolaj},
50
+ title = {Major TOM: Expandable Datasets for Earth Observation},
51
+ journal = {arXiv preprint arXiv:2402.12095},
52
+ year = {2024},
53
+ doi = {10.1109/IGARSS53475.2024.10640760}
54
+ }
55
+ """
56
+
57
+
58
+ bibtex_2 = """
59
+ @article{czerkawski2024global,
60
+ title = {Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space},
61
+ author = {Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J. and others},
62
+ journal = {arXiv preprint arXiv:2412.05600},
63
+ year = {2024},
64
+ doi = {10.48550/arXiv.2412.05600}
65
+ }
66
+ """
67
+
68
+ # Create a collection object with metadata for the dataset
69
+ collection_object = tacotoolbox.datamodel.Collection(
70
+ id="majortom-core-combo",
71
+ title="Major TOM Core-Combo (TACO)",
72
+ dataset_version="1.0.0",
73
+ description=description,
74
+ licenses=["refer-to-upstream"],
75
+ extent={
76
+ "spatial": [[-180.0, -90.0, 180.0, 90.0]], # global coverage (land-focused per upstream)
77
+ "temporal": [["2014-01-01T00:00:00Z", "2025-09-09T00:00:00Z"]]
78
+ },
79
+ providers=[
80
+ {
81
+ "name": "ESA Φ-lab / Major TOM (Hugging Face)",
82
+ "roles": ["producer", "publisher"],
83
+ "links": [
84
+ {"href": "https://huggingface.co/Major-TOM", "rel": "source", "type": "text/html"}
85
+ ],
86
+ },
87
+ {
88
+ "name": "TACO Foundation",
89
+ "roles": ["curator"],
90
+ "links": [
91
+ {"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}
92
+ ],
93
+ }
94
+ ],
95
+ keywords=["remote-sensing", "earth-observation", "multimodal", "deep-learning",
96
+ "sentinel-2", "sentinel-1", "dem", "embeddings", "taco"],
97
+ task="multimodal-learning",
98
+ curators=[
99
+ {
100
+ "name": "Julio Contreras",
101
+ "organization": "Image & Signal Processing",
102
+ "email": ["[email protected]"],
103
+ "links": [{"href": "https://juliocontrerash.github.io/", "rel": "homepage", "type": "text/html"}],
104
+ },
105
+ {
106
+ "name": "TACO Foundation",
107
+ "organization": "TACO",
108
+ "links": [{"href": "https://huggingface.co/datasets/tacofoundation/", "rel": "homepage", "type": "text/html"}],
109
+ }
110
+ ],
111
+ split_strategy="all-train",
112
+ discuss_link={
113
+ "href": "https://huggingface.co/Major-TOM",
114
+ "rel": "discussion",
115
+ "type": "text/html"
116
+ },
117
+ raw_link={
118
+ "href": "https://huggingface.co/Major-TOM",
119
+ "rel": "source",
120
+ "type": "text/html"
121
+ },
122
+ # Optional domain-specific metadata (mirrors your README sections)
123
+ optical_data={"sensor": "sentinel2msi"},
124
+ radar_data={"sensor": "sentinel1-rtc"},
125
+ elevation_data={"sensor": "cop-dem30"},
126
+ embeddings={
127
+ "families": ["SSL4EO", "DINOv2", "SigLIP", "DeCUR", "MMEarth", "AlphaEarth"],
128
+ "storage": "per-patch vectors (Parquet/NPY sidecars)"
129
+ },
130
+ taco_spec={
131
+ "grid": "Major TOM global grid",
132
+ "patch_size_px": [512, 512],
133
+ "resolution_m": 10,
134
+ "spatial_extent_m": [5160, 5160],
135
+ "assets": {
136
+ "S2_L2A": "GeoTIFF, 13 bands (B1–B12 incl. B10) @10m",
137
+ "S1_RTC": "GeoTIFF, 2–3 bands (VV, VH, optional angle) @10m",
138
+ "DEM": "GeoTIFF, 1–3 bands (elevation, optional slope/aspect) @10m",
139
+ "EMB": "Optional per-patch embeddings (Parquet/NPY)"
140
+ }
141
+ },
142
+ labels={
143
+ "label_classes": [],
144
+ "label_description": "No labeled classes. Designed for representation learning and multimodal tasks."
145
+ },
146
+ scientific={
147
+ "doi": "to-be-assigned",
148
+ "citation": "Please cite the Major TOM paper(s) and the IGARSS 2024 proceeding.",
149
+ "summary": "Major TOM Core-Combo reorganizes upstream Major TOM sources (S2/S1/DEM and embeddings) into aligned TACO tortillas for fast, consistent access.",
150
+ "publications": [
151
+ {"doi": "10.48550/arXiv.2402.12095", "citation": bibtex_1, "summary": "arXiv paper introducing the Major TOM framework."},
152
+ {"doi": "10.48550/arXiv.2412.05600", "citation": bibtex_2, "summary": "arXiv on global/dense embeddings aligned to Major TOM grid."}
153
+ ]
154
+ }
155
+ )