---
license:
- apache-2.0 # licenses vary per upstream Major TOM datasets (S2/S1/DEM/embeddings)
language:
- en
tags:
- remote-sensing
- earth-observation
- sentinel-2
- sentinel-1
- dem
- embeddings
- multimodal
- deep-learning
- taco
pretty_name: Major TOM Core-Combo
viewer: false
---

This dataset follows the TACO specification.
# Major TOM Core-Combo (TACO)

A **TACO-formatted** multimodal dataset built on **Major TOM**. Each sample aligns **Sentinel-2 L2A**, **Sentinel-1 RTC**, **Copernicus DEM 30**, and optional **Major TOM embeddings** under a single grid so patches are spatially matched and ready for training and evaluation.
## Description
### Dataset
This dataset packages co-registered patches drawn from the **Major TOM core datasets** (S2 L2A / S2 L1C / S1 RTC / DEM) and the official **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth). Major TOM defines a **geographical indexing grid** and a **metadata structure** to merge multi-source EO data—ideal for large-scale pretraining, representation learning, and multimodal fusion.
**What each sample contains:**
- **S2 L2A (10 m)** — 13 MSI bands (B1–B12 incl. B10), with native 20 m/60 m bands resampled to 10 m for a consistent stack.
- **S1 RTC (10 m)** — backscatter (VV/VH) and optional geometry/angle layers, co-registered to the S2 grid.
- **DEM (30 m → 10 m)** — Copernicus DEM 30 resampled to 10 m, with optional derived slope/aspect.
- **Embeddings (optional)** — one or more per-patch vectors from Major TOM families (e.g., SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth, AlphaEarth).
- **Metadata** — acquisition dates, orbit/pass, QA (e.g., S2 cloud metrics when available), CRS and affine transform, plus upstream lineage.
The dataset inherits **global land coverage** from Major TOM Core and is **extensible** (you can enable/disable modalities and embeddings per tortilla).
### Sensors used
- **Sentinel-2 MSI (L2A/L1C)** — optical multispectral, 13 bands (443–2190 nm) at 10/20/60 m; all represented on a unified 10 m grid.
- **Sentinel-1 RTC** — SAR backscatter (VV/VH) in analysis-ready RTC format at ~10 m.
- **Copernicus DEM 30** — global 30 m elevation resampled to 10 m for alignment.
- **Embeddings** — model-derived features aligned to the same grid (families: SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth subset).
## Creators
- ESA Φ-lab & collaborators
## Original datasets
See the official **Major TOM** organization for coverage, counts and updates:
- **Major TOM organization overview (Hugging Face)**
- **Core datasets**: Core-S2L2A, Core-S2L1C, Core-S1RTC, Core-DEM
- **Embedding releases**: Core-S2L1C-SSL4EO, Core-S1RTC-SSL4EO, Core-S2RGB-DINOv2, Core-S2RGB-SigLIP, Core-S2L1C-DeCUR, Core-S1RTC-DeCUR, Core-S2L2A-MMEarth, Core-AlphaEarth-Embeddings
- **Spec & paper**: “Major TOM: Expandable Datasets for Earth Observation” (arXiv) and the IGARSS 2024 citation (see Publications)
> Note: sizes/coverage and licenses are inherited from upstream. Always consult the upstream dataset cards.
## TACO dataset
**Construction**
- **Grid & tiling**: adopt Major TOM’s global grid; fixed-size **512 × 512 px @ 10 m** (~5.12 km) windows keyed by grid cell.
- **Temporal pairing**: select closest-in-time S1/S2 acquisitions per cell (configurable), preferring **clear-sky** S2 for optical stacks.
- **Embeddings**: if enabled, fetch and store per-patch embedding vectors (Parquet/NPY sidecar) indexed by the tortilla.
- **Lineage metadata**: upstream identifiers/commits, acquisition timestamps, processing levels, and provenance.
**Default patch geometry**
- **Spatial extent**: 5160 m × 5160 m
- **S2 tensor (bands)**: 13 (B1–B12 incl. B10) → **512 × 512 × 13**
- **S1 tensor (VV/VH)**: 2 (plus optional angle) → **512 × 512 × 2–3**
- **DEM tensor**: 1 (or +slope/aspect) → **512 × 512 × 1–3**
- **Embeddings**: 1..N vectors stored as sidecars (per-patch, not per-pixel)
### Spectral Bands (S2 MSI)
We expose the native Sentinel-2 MSI band set and place all on a unified 10 m grid:
| idx | Band | Name | Central λ | Nominal Res. | Notes |
|:---:|:----:|---------------------------|:---------:|:------------:|------|
| 0 | B1 | Coastal Aerosol | 443 nm | 60 m | resampled to 10 m |
| 1 | B2 | Blue | 492 nm | 10 m | |
| 2 | B3 | Green | 560 nm | 10 m | |
| 3 | B4 | Red | 665 nm | 10 m | |
| 4 | B5 | Red Edge 1 | 704 nm | 20 m | resampled to 10 m |
| 5 | B6 | Red Edge 2 | 740 nm | 20 m | resampled to 10 m |
| 6 | B7 | Red Edge 3 | 783 nm | 20 m | resampled to 10 m |
| 7 | B8 | NIR (Broad) | 833 nm | 10 m | |
| 8 | B8A | NIR (Narrow) | 865 nm | 20 m | resampled to 10 m |
| 9 | B9 | Water Vapour | 945 nm | 60 m | resampled to 10 m |
| 10 | B10 | Cirrus (WV 1375 nm) | 1375 nm | 60 m | optional for ML |
| 11 | B11 | SWIR 1 | 1610 nm | 20 m | resampled to 10 m |
| 12 | B12 | SWIR 2 | 2200 nm | 20 m | resampled to 10 m |
---
## 🔄 Reproducible Example
```python
import tacoreader
import rasterio as rio
import numpy as np
import matplotlib.pyplot as plt
# Load the dataset (replace with the final registry name when published)
ds = tacoreader.load("tacofoundation:majortom-core-combo")
# Read a sample
i = 0
row = ds.read(i)
row_id = ds.iloc[i]["tortilla:id"]
s2_path = row.read("S2_L2A") # GeoTIFF
s1_path = row.read("S1_RTC") # GeoTIFF
dem_path = row.read("DEM") # GeoTIFF
# emb_path = row.read("EMB") # Optional embeddings (Parquet/NPY)
with rio.open(s2_path) as s2, rio.open(s1_path) as s1, rio.open(dem_path) as dem:
# Simple S2 RGB (B4,B3,B2)
rgb = np.stack([s2.read(4), s2.read(3), s2.read(2)], axis=0)
rgb = np.transpose(rgb, (1,2,0))
rgb_norm = np.clip(rgb / 2000.0, 0, 1)
vv = s1.read(1)
dem_elev = dem.read(1)
fig, ax = plt.subplots(1,3, figsize=(13,4.2))
ax[0].imshow(rgb_norm); ax[0].set_title(f"S2 RGB — {row_id}"); ax[0].axis("off")
ax[1].imshow(vv); ax[1].set_title("S1 VV"); ax[1].axis("off")
ax[2].imshow(dem_elev); ax[2].set_title("DEM"); ax[2].axis("off")
plt.tight_layout(); plt.show()
```
## 🛰️ Sensor Information
Sources in this dataset: **sentinel2msi**, **sentinel1-rtc**, **cop-dem30**, and **Major TOM embeddings** (SSL4EO, DINOv2, SigLIP, DeCUR, MMEarth; optional AlphaEarth).
## 🎯 Tasks
General-purpose: **self-supervised pretraining**, **representation learning**, **multimodal fusion**, **semantic segmentation**, **change detection**, **classification**, **retrieval**.
## 📂 Original Data Repositories (Upstream)
* Major TOM organization [page](https://huggingface.co/Major-TOM).
## 💬 Discussion
Use the Major TOM org discussions/Spaces and the **satellite-image-deep-learning Discord** (Major TOM channels) to coordinate contributions and combinations.
## 🔀 Split Strategy
All train.
## 📚 Scientific Publications
### Publication 01
* **arXiv**: *Major TOM: Expandable Datasets for Earth Observation* (Francis & Czerkawski, 2024).
**BibTeX**:
```bibtex
@article{MajorTOM2024,
author = {Francis, Alistair and Czerkawski, Mikolaj},
title = {Major TOM: Expandable Datasets for Earth Observation},
journal = {arXiv preprint arXiv:2402.12095},
year = {2024},
doi = {10.1109/IGARSS53475.2024.10640760}
}
```
### Publication 02
* **arXiv (2024)**: *Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space*.
```bibtex
@article{czerkawski2024global,
title={Global and dense embeddings of earth: Major tom floating in the latent space},
author={Czerkawski, Mikolaj and Kluczek, Marcin and Bojanowski, J{\"A} and others},
journal={arXiv preprint arXiv:2412.05600},
year={2024},
doi= {10.48550/arXiv.2412.05600}
}
```
## 🤝 Data Providers
| **Name** | **Role** | **URL** |
| :---------------------------- | :--------------------- | :------------------------------------------------------------------- |
| ESA Φ-lab | producer / coordinator | [https://philab.esa.int/](https://philab.esa.int/) |
| Major TOM (HF) | publisher (org) | [https://huggingface.co/Major-TOM](https://huggingface.co/Major-TOM) |
| CloudFerro (embeddings infra) | collaborator | [https://cloudferro.com/](https://cloudferro.com/) |
---
## 🧑🔬 Curators
| **Name** | **Organization** | **URL** |
| :-------------- | :------------------------ | :------------------------------------------------------------------------------------------------- |
| Julio Contreras | Image & Signal Processing | [https://juliocontrerash.github.io/](https://juliocontrerash.github.io/) |
| TACO Foundation | Curation (TACO format) | [https://huggingface.co/datasets/tacofoundation/](https://huggingface.co/datasets/tacofoundation/) |
---
## 🎞 Official Image Datasets (from Major TOM)
| Dataset | Modality | Number of Patches | Sensing Type | Comments |
| ---------- | ------------------- | ----------------- | --------------------- | --------------- |
| Core-S2L2A | Sentinel-2 Level 2A | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
| Core-S2L1C | Sentinel-2 Level 1C | 2,245,886 | Multi-Spectral | Global (≈23 TB) |
| Core-S1RTC | Sentinel-1 RTC | 1,469,955 | SAR | Global (≈16 TB) |
| Core-DEM | Copernicus DEM 30 | 1,837,843 | Digital Surface Model | Global (≈1 TB) |
---
## 📊 Official Embedding Datasets (from Major TOM)
| Dataset | Modality | # Embeddings | Sensing Type | Source Dataset | Source Model | Size |
| -------------------------- | -------------------- | -------------- | -------------- | -------------- | --------------------- | -------- |
| Core-S2L1C-SSL4EO | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DINO | 252.9 GB |
| Core-S1RTC-SSL4EO | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-MOCO | 332.5 GB |
| Core-S2RGB-DINOv2 | Sentinel-2 L2A (RGB) | 56,147,150 | True Colour | Core-S2L2A | DINOv2 | 223.1 GB |
| Core-S2RGB-SigLIP | Sentinel-2 L2A (RGB) | 20,212,974 | True Colour | Core-S2L2A | SigLIP-SO400M-384 | 41.3 GB |
| Core-S2L1C-DeCUR | Sentinel-2 Level 1C | 56,147,150 | Multi-Spectral | Core-S2L1C | SSL4EO-ResNet50-DeCUR | 252.9 GB |
| Core-S1RTC-DeCUR | Sentinel-1 RTC | 36,748,875 | SAR | Core-S1RTC | SSL4EO-ResNet50-DeCUR | 332.5 GB |
| Core-S2L2A-MMEarth | Sentinel-2 L2A (MSI) | 39,727,477,454 | Multi-Spectral | Core-S2L2A | MMEarth | 5080 GB |
| Core-AlphaEarth-Embeddings | Multimodal | 71,276,453,136 | Multiple | AlphaEarth | AlphaEarth | 6070 GB |
---
**Key sources for facts & tables:** Major TOM org page with official tables and IGARSS citation (org card), the arXiv paper describing the framework and grid, specific upstream dataset cards (Core-S2L2A / Core-S1RTC / Core-DEM), the AlphaEarth subset card, and ESA Φ-lab’s post on embedding expansions. ([huggingface.co][1], [arxiv.org][2], [philab.esa.int][3])
[1]: https://huggingface.co/Major-TOM "Major-TOM (Major TOM)"
[2]: https://arxiv.org/abs/2402.12095 "Major TOM: Expandable Datasets for Earth Observation"
[3]: https://philab.esa.int/new-ai-powered-insights-with-the-latest-major-tom-embeddings/ "New AI-powered insights with the latest Major TOM embeddings"