Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
1K - 10K
ArXiv:
updating the repo with the loader script
Browse files- atc_data_loader.py +275 -0
atc_data_loader.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
#
|
| 4 |
+
# SPDX-FileCopyrightText: Copyright © <2022> Idiap Research Institute <[email protected]>
|
| 5 |
+
#
|
| 6 |
+
# SPDX-FileContributor: Juan Zuluaga-Gomez <[email protected]>
|
| 7 |
+
#
|
| 8 |
+
# SPDX-License-Identifier: MIT-License
|
| 9 |
+
|
| 10 |
+
"""\
|
| 11 |
+
Script for loading air traffic control (ATC) speech datasets for automatic speech recognition (ASR).
|
| 12 |
+
This script has been designed for ATC datasets that are in Kaldi format
|
| 13 |
+
|
| 14 |
+
Required files: text, wav.scp and segments files
|
| 15 |
+
|
| 16 |
+
- Databases
|
| 17 |
+
- Training:
|
| 18 |
+
- ATCOSIM, LDC-ATCC and, UWB-ATCC corpora.
|
| 19 |
+
- Testing:
|
| 20 |
+
- ATCO2-test-set, ATCOSIM, LDC-ATCC and, UWB-ATCC corpora.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
import os
|
| 24 |
+
import re
|
| 25 |
+
|
| 26 |
+
import datasets
|
| 27 |
+
import numpy as np
|
| 28 |
+
import soundfile as sf
|
| 29 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
| 30 |
+
|
| 31 |
+
_CITATION = """\
|
| 32 |
+
@article{zuluaga2022does,
|
| 33 |
+
title={How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
|
| 34 |
+
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and Motlicek, Petr and Kleinert, Matthias and Helmke, Hartmut and Ohneiser, Oliver and Zhan, Qingran},
|
| 35 |
+
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
|
| 36 |
+
year={2022}
|
| 37 |
+
}
|
| 38 |
+
@article{zuluagabertraffic,
|
| 39 |
+
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications (submitted to @ SLT-2022)},
|
| 40 |
+
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and Nigmatulina, Iuliia and Motlicek, Petr and Ohneiser, Oliver and Helmke, Hartmut},
|
| 41 |
+
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
|
| 42 |
+
year={2022}
|
| 43 |
+
}
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
_DESCRIPTION = """\
|
| 47 |
+
ATC speech DATASET. This DataLoader works with data in Kaldi format.
|
| 48 |
+
- We use the following files: text, segments and wav.scp
|
| 49 |
+
- text --> utt_id transcript
|
| 50 |
+
- segments --> utt_id recording_id t_begin t_end
|
| 51 |
+
- wav.scp --> recording_id /path/to/wav/
|
| 52 |
+
The default dataset is from ATCO2 project, a 1-hour sample: https://www.replaywell.com/atco2/download/ATCO2-ASRdataset-v1_beta.tgz
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
_DATA_URL = "http://catalog.elra.info/en-us/repository/browse/ELRA-S0484/"
|
| 56 |
+
|
| 57 |
+
_HOMEPAGE = "https://github.com/idiap/w2v2-air-traffic"
|
| 58 |
+
|
| 59 |
+
logger = datasets.logging.get_logger(__name__)
|
| 60 |
+
|
| 61 |
+
# Our models work with audio data at 16kHZ,
|
| 62 |
+
_SAMPLING_RATE = int(16000)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ATCDataASRConfig(datasets.BuilderConfig):
|
| 66 |
+
"""BuilderConfig for air traffic control datasets."""
|
| 67 |
+
|
| 68 |
+
def __init__(self, **kwargs):
|
| 69 |
+
"""
|
| 70 |
+
Args:
|
| 71 |
+
data_dir: `string`, the path to the folder containing the files required to read: json or wav.scp
|
| 72 |
+
**kwargs: keyword arguments forwarded to super.
|
| 73 |
+
"""
|
| 74 |
+
super(ATCDataASRConfig, self).__init__(**kwargs)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class ATCDataASR(datasets.GeneratorBasedBuilder):
|
| 78 |
+
|
| 79 |
+
DEFAULT_WRITER_BATCH_SIZE = 256
|
| 80 |
+
DEFAULT_CONFIG_NAME = "all"
|
| 81 |
+
BUILDER_CONFIGS = [
|
| 82 |
+
# TRAIN, DEV AND TEST DATASETS
|
| 83 |
+
ATCDataASRConfig(name="train", description="ATC train dataset."),
|
| 84 |
+
ATCDataASRConfig(name="dev", description="ATC dev dataset."),
|
| 85 |
+
ATCDataASRConfig(name="test", description="ATC test dataset."),
|
| 86 |
+
# UNSUPERVISED DATASETS
|
| 87 |
+
ATCDataASRConfig(name="unsupervised", description="ATC unsupervised dataset."),
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
# provide some information about the Dataset we just gathered
|
| 91 |
+
def _info(self):
|
| 92 |
+
return datasets.DatasetInfo(
|
| 93 |
+
description=_DESCRIPTION,
|
| 94 |
+
features=datasets.Features(
|
| 95 |
+
{
|
| 96 |
+
"id": datasets.Value("string"),
|
| 97 |
+
"file": datasets.Value("string"),
|
| 98 |
+
"audio": datasets.features.Audio(sampling_rate=_SAMPLING_RATE),
|
| 99 |
+
"text": datasets.Value("string"),
|
| 100 |
+
"segment_start_time": datasets.Value("float"),
|
| 101 |
+
"segment_end_time": datasets.Value("float"),
|
| 102 |
+
"duration": datasets.Value("float"),
|
| 103 |
+
}
|
| 104 |
+
),
|
| 105 |
+
supervised_keys=("audio", "text"),
|
| 106 |
+
homepage=_HOMEPAGE,
|
| 107 |
+
citation=_CITATION,
|
| 108 |
+
task_templates=[
|
| 109 |
+
AutomaticSpeechRecognition(
|
| 110 |
+
audio_column="audio", transcription_column="text"
|
| 111 |
+
)
|
| 112 |
+
],
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def _split_generators(self, dlmanager):
|
| 116 |
+
"""Returns SplitGenerators."""
|
| 117 |
+
|
| 118 |
+
split = self.config.name
|
| 119 |
+
|
| 120 |
+
# UNSUPERVISED set (used only for decoding)
|
| 121 |
+
if "unsupervised" in split:
|
| 122 |
+
split_name = datasets.Split.TEST
|
| 123 |
+
elif "test" in split or "dev" in split or "dummy" in split:
|
| 124 |
+
split_name = datasets.Split.TEST
|
| 125 |
+
# The last option left is: Train set
|
| 126 |
+
else:
|
| 127 |
+
split_name = datasets.Split.TRAIN
|
| 128 |
+
|
| 129 |
+
# you need to pass a data directory where the Kaldi folder is stored
|
| 130 |
+
filepath = self.config.data_dir
|
| 131 |
+
|
| 132 |
+
return [
|
| 133 |
+
datasets.SplitGenerator(
|
| 134 |
+
name=split_name,
|
| 135 |
+
# These kwargs will be passed to _generate_examples
|
| 136 |
+
gen_kwargs={
|
| 137 |
+
"filepath": filepath,
|
| 138 |
+
"split": split,
|
| 139 |
+
},
|
| 140 |
+
)
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
def _generate_examples(self, filepath, split):
|
| 144 |
+
"""You need to pass a path with the kaldi data, the folder should have
|
| 145 |
+
audio: wav.scp,
|
| 146 |
+
transcripts: text,
|
| 147 |
+
timing information: segments
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
logger.info("Generating examples located in: %s", filepath)
|
| 151 |
+
|
| 152 |
+
text_file = os.path.join(filepath, "text")
|
| 153 |
+
wavscp = os.path.join(filepath, "wav.scp")
|
| 154 |
+
segments = os.path.join(filepath, "segments")
|
| 155 |
+
|
| 156 |
+
id_ = ""
|
| 157 |
+
text_dict, wav_dict = {}, {}
|
| 158 |
+
segments_dict, utt2wav_id = {}, {}
|
| 159 |
+
|
| 160 |
+
line = 0
|
| 161 |
+
# get the text file
|
| 162 |
+
with open(text_file) as text_f:
|
| 163 |
+
for line in text_f:
|
| 164 |
+
if len(line.split(" ")) > 1:
|
| 165 |
+
id_, transcript = line.split(" ", maxsplit=1)
|
| 166 |
+
transcript = _remove_special_characters(transcript)
|
| 167 |
+
if len(transcript.split(" ")) == 0:
|
| 168 |
+
continue
|
| 169 |
+
if len(transcript) < 2:
|
| 170 |
+
continue
|
| 171 |
+
text_dict[id_] = transcript
|
| 172 |
+
else: # line is empty
|
| 173 |
+
# if unsupervised set, then it's normal. else, continue
|
| 174 |
+
if not "test_unsup" in self.config.name:
|
| 175 |
+
continue
|
| 176 |
+
id_ = line.rstrip().split(" ")[0]
|
| 177 |
+
text_dict[id_] = ""
|
| 178 |
+
|
| 179 |
+
# get wav.scp and load data into memory
|
| 180 |
+
with open(wavscp) as text_f:
|
| 181 |
+
for line in text_f:
|
| 182 |
+
if line:
|
| 183 |
+
if len(line.split()) < 2:
|
| 184 |
+
continue
|
| 185 |
+
id_, wavpath = line.split(" ", maxsplit=1)
|
| 186 |
+
# only selects the part that ends of wav, flac or sph
|
| 187 |
+
wavpath = [
|
| 188 |
+
x
|
| 189 |
+
for x in wavpath.split(" ")
|
| 190 |
+
if ".wav" in x or ".WAV" in x or ".flac" in x or ".sph" in x
|
| 191 |
+
][0].rstrip()
|
| 192 |
+
|
| 193 |
+
# make the output
|
| 194 |
+
segment, sampling_rate = sf.read(wavpath, dtype=np.int16)
|
| 195 |
+
wav_dict[id_] = [wavpath.rstrip(), segment, sampling_rate]
|
| 196 |
+
|
| 197 |
+
# get segments dictionary
|
| 198 |
+
with open(segments) as text_f:
|
| 199 |
+
for line in text_f:
|
| 200 |
+
if line:
|
| 201 |
+
if len(line.split()) < 4:
|
| 202 |
+
continue
|
| 203 |
+
id_, wavid_, start, end = line.rstrip().split(" ")
|
| 204 |
+
segments_dict[id_] = start.rstrip(), end.rstrip()
|
| 205 |
+
utt2wav_id[id_] = wavid_
|
| 206 |
+
|
| 207 |
+
for rec_id, text in text_dict.items():
|
| 208 |
+
if rec_id in utt2wav_id and rec_id in segments_dict:
|
| 209 |
+
|
| 210 |
+
# get audio data from memory and the path of the file
|
| 211 |
+
wavpath, segment, sampling_rate = wav_dict[utt2wav_id[rec_id]]
|
| 212 |
+
# get timing information
|
| 213 |
+
seg_start, seg_end = segments_dict[rec_id]
|
| 214 |
+
seg_start, seg_end = float(seg_start), float(seg_end)
|
| 215 |
+
duration = round((seg_end - seg_start), 3)
|
| 216 |
+
|
| 217 |
+
# get the samples, bytes, already cropping by segment,
|
| 218 |
+
samples = _extract_audio_segment(
|
| 219 |
+
segment, sampling_rate, float(seg_start), float(seg_end)
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# output data for given dataset
|
| 223 |
+
example = {
|
| 224 |
+
"audio": {
|
| 225 |
+
"path": wavpath,
|
| 226 |
+
"array": samples,
|
| 227 |
+
"sampling_rate": sampling_rate,
|
| 228 |
+
},
|
| 229 |
+
"id": rec_id,
|
| 230 |
+
"file": wavpath,
|
| 231 |
+
"text": text,
|
| 232 |
+
"segment_start_time": format(float(seg_start), ".3f"),
|
| 233 |
+
"segment_end_time": format(float(seg_end), ".3f"),
|
| 234 |
+
"duration": format(float(duration), ".3f"),
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
yield rec_id, example
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def _remove_special_characters(text):
|
| 241 |
+
"""Function to remove some special chars/symbols from the given transcript"""
|
| 242 |
+
|
| 243 |
+
text = text.split(" ")
|
| 244 |
+
# first remove words between [] and <>
|
| 245 |
+
text = " ".join(
|
| 246 |
+
[
|
| 247 |
+
x
|
| 248 |
+
for x in text
|
| 249 |
+
if "[" not in x and "]" not in x and "<" not in x and ">" not in x
|
| 250 |
+
]
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# regex with predifined symbols to ignore/remove,
|
| 254 |
+
chars_to_ignore_regex2 = '[\{\[\]\<\>\/\,\?\.\!\u00AC\;\:"\\%\\\]|[0-9]'
|
| 255 |
+
|
| 256 |
+
text = re.sub(chars_to_ignore_regex2, "", text).lower()
|
| 257 |
+
sentence = text.replace("\u2013", "-")
|
| 258 |
+
sentence = sentence.replace("\u2014", "-")
|
| 259 |
+
sentence = sentence.replace("\u2018", "'")
|
| 260 |
+
sentence = sentence.replace("\u201C", "")
|
| 261 |
+
sentence = sentence.replace("\u201D", "")
|
| 262 |
+
sentence = sentence.replace("ñ", "n")
|
| 263 |
+
sentence = sentence.replace(" - ", " ")
|
| 264 |
+
sentence = sentence.replace("-", "")
|
| 265 |
+
sentence = sentence.replace("'", " ")
|
| 266 |
+
return sentence.lower().rstrip()
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec):
|
| 270 |
+
"""Extracts segment of audio samples (as an ndarray) from the given segment."""
|
| 271 |
+
# The dataset only contains mono audio.
|
| 272 |
+
start_sample = int(start_sec * sampling_rate)
|
| 273 |
+
end_sample = min(int(end_sec * sampling_rate), segment.shape[0])
|
| 274 |
+
samples = segment[start_sample:end_sample]
|
| 275 |
+
return samples
|