Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
1M - 10M
ArXiv:
License:
Delete peoples_speech.py
Browse files- peoples_speech.py +0 -225
peoples_speech.py
DELETED
|
@@ -1,225 +0,0 @@
|
|
| 1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import json
|
| 16 |
-
import os
|
| 17 |
-
|
| 18 |
-
import datasets
|
| 19 |
-
from tqdm.auto import tqdm
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 23 |
-
_CITATION = """\
|
| 24 |
-
@article{DBLP:journals/corr/abs-2111-09344,
|
| 25 |
-
author = {Daniel Galvez and
|
| 26 |
-
Greg Diamos and
|
| 27 |
-
Juan Ciro and
|
| 28 |
-
Juan Felipe Ceron and
|
| 29 |
-
Keith Achorn and
|
| 30 |
-
Anjali Gopi and
|
| 31 |
-
David Kanter and
|
| 32 |
-
Maximilian Lam and
|
| 33 |
-
Mark Mazumder and
|
| 34 |
-
Vijay Janapa Reddi},
|
| 35 |
-
title = {The People's Speech: A Large-Scale Diverse English Speech Recognition
|
| 36 |
-
Dataset for Commercial Usage},
|
| 37 |
-
journal = {CoRR},
|
| 38 |
-
volume = {abs/2111.09344},
|
| 39 |
-
year = {2021},
|
| 40 |
-
url = {https://arxiv.org/abs/2111.09344},
|
| 41 |
-
eprinttype = {arXiv},
|
| 42 |
-
eprint = {2111.09344},
|
| 43 |
-
timestamp = {Mon, 22 Nov 2021 16:44:07 +0100},
|
| 44 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib},
|
| 45 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 46 |
-
}
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
# You can copy an official description
|
| 50 |
-
_DESCRIPTION = """\
|
| 51 |
-
The People's Speech is a free-to-download 30,000-hour and growing supervised
|
| 52 |
-
conversational English speech recognition dataset licensed for academic and
|
| 53 |
-
commercial usage under CC-BY-SA (with a CC-BY subset).
|
| 54 |
-
"""
|
| 55 |
-
|
| 56 |
-
_HOMEPAGE = "https://mlcommons.org/en/peoples-speech/"
|
| 57 |
-
|
| 58 |
-
_LICENSE = [
|
| 59 |
-
"cc-by-2.0", "cc-by-2.5", "cc-by-3.0", "cc-by-4.0", "cc-by-sa-2.5",
|
| 60 |
-
"cc-by-sa-3.0", "cc-by-sa-4.0"
|
| 61 |
-
]
|
| 62 |
-
|
| 63 |
-
_BASE_URL = "https://huggingface.co/datasets/MLCommons/peoples_speech/resolve/main/"
|
| 64 |
-
|
| 65 |
-
# relative path to data inside dataset's repo
|
| 66 |
-
_DATA_URL = _BASE_URL + "{split}/{config}/{config}_{archive_id:06d}.tar"
|
| 67 |
-
|
| 68 |
-
# relative path to file containing number of audio archives inside dataset's repo
|
| 69 |
-
_N_SHARDS_URL = _BASE_URL + "n_shards.json"
|
| 70 |
-
|
| 71 |
-
# relative path to metadata inside dataset's repo
|
| 72 |
-
_MANIFEST_URL = _BASE_URL + "{split}/{config}.json"
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
class PeoplesSpeechConfig(datasets.BuilderConfig):
|
| 76 |
-
|
| 77 |
-
def __init__(self, *args, **kwargs):
|
| 78 |
-
super().__init__(*args, **kwargs)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
class PeoplesSpeech(datasets.GeneratorBasedBuilder):
|
| 82 |
-
"""The People's Speech dataset."""
|
| 83 |
-
|
| 84 |
-
VERSION = datasets.Version("1.1.0")
|
| 85 |
-
BUILDER_CONFIGS = [
|
| 86 |
-
PeoplesSpeechConfig(name="microset", version=VERSION, description="Small subset of clean data for example pusposes."),
|
| 87 |
-
PeoplesSpeechConfig(name="clean", version=VERSION, description="Clean, CC-BY licensed subset."),
|
| 88 |
-
PeoplesSpeechConfig(name="dirty", version=VERSION, description="Dirty, CC-BY licensed subset."),
|
| 89 |
-
PeoplesSpeechConfig(name="clean_sa", version=VERSION, description="Clean, CC-BY-SA licensed subset."),
|
| 90 |
-
PeoplesSpeechConfig(name="dirty_sa", version=VERSION, description="Dirty, CC-BY-SA licensed subset."),
|
| 91 |
-
PeoplesSpeechConfig(name="test", version=VERSION, description="Only test data."),
|
| 92 |
-
PeoplesSpeechConfig(name="validation", version=VERSION, description="Only validation data."),
|
| 93 |
-
]
|
| 94 |
-
DEFAULT_CONFIG_NAME = "clean"
|
| 95 |
-
DEFAULT_WRITER_BATCH_SIZE = 512
|
| 96 |
-
|
| 97 |
-
def _info(self):
|
| 98 |
-
return datasets.DatasetInfo(
|
| 99 |
-
description=_DESCRIPTION,
|
| 100 |
-
features=datasets.Features(
|
| 101 |
-
{
|
| 102 |
-
"id": datasets.Value("string"),
|
| 103 |
-
"audio": datasets.Audio(),
|
| 104 |
-
"duration_ms": datasets.Value("int32"),
|
| 105 |
-
"text": datasets.Value("string"),
|
| 106 |
-
}
|
| 107 |
-
),
|
| 108 |
-
homepage=_HOMEPAGE,
|
| 109 |
-
license="/".join(_LICENSE), # license must be a string
|
| 110 |
-
citation=_CITATION,
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
def _split_generators(self, dl_manager):
|
| 114 |
-
|
| 115 |
-
if self.config.name == "microset":
|
| 116 |
-
# take only first data archive for demo purposes
|
| 117 |
-
url = [_DATA_URL.format(split="train", config="clean", archive_id=0)]
|
| 118 |
-
archive_path = dl_manager.download(url)
|
| 119 |
-
local_extracted_archive_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else [None]
|
| 120 |
-
manifest_url = _MANIFEST_URL.format(split="train", config="clean_000000") # train/clean_000000.json
|
| 121 |
-
manifest_path = dl_manager.download_and_extract(manifest_url)
|
| 122 |
-
|
| 123 |
-
return [
|
| 124 |
-
datasets.SplitGenerator(
|
| 125 |
-
name=datasets.Split.TRAIN,
|
| 126 |
-
gen_kwargs={
|
| 127 |
-
"local_extracted_archive_paths": local_extracted_archive_path,
|
| 128 |
-
# use iter_archive here to access the files in the TAR archives:
|
| 129 |
-
"archives": [dl_manager.iter_archive(path) for path in archive_path],
|
| 130 |
-
"manifest_path": manifest_path,
|
| 131 |
-
},
|
| 132 |
-
),
|
| 133 |
-
]
|
| 134 |
-
|
| 135 |
-
n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
|
| 136 |
-
with open(n_shards_path, encoding="utf-8") as f:
|
| 137 |
-
n_shards = json.load(f)
|
| 138 |
-
|
| 139 |
-
if self.config.name in ["validation", "test"]:
|
| 140 |
-
splits_to_configs = {self.config.name: self.config.name}
|
| 141 |
-
else:
|
| 142 |
-
splits_to_configs = {
|
| 143 |
-
"train": self.config.name,
|
| 144 |
-
"validation": "validation",
|
| 145 |
-
"test": "test"
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
audio_urls = {
|
| 149 |
-
split: [
|
| 150 |
-
_DATA_URL.format(split=split, config=config, archive_id=i) for i in range(n_shards[split][config])
|
| 151 |
-
] for split, config in splits_to_configs.items()
|
| 152 |
-
}
|
| 153 |
-
audio_archive_paths = dl_manager.download(audio_urls)
|
| 154 |
-
|
| 155 |
-
# In non-streaming mode, we extract the archives to have the data locally:
|
| 156 |
-
local_extracted_archive_paths = dl_manager.extract(audio_archive_paths) \
|
| 157 |
-
if not dl_manager.is_streaming else \
|
| 158 |
-
{split: [None] * len(audio_archive_paths[split]) for split in splits_to_configs}
|
| 159 |
-
|
| 160 |
-
manifest_urls = {
|
| 161 |
-
split: _MANIFEST_URL.format(split=split, config=config) for split, config in splits_to_configs.items()
|
| 162 |
-
}
|
| 163 |
-
manifest_paths = dl_manager.download_and_extract(manifest_urls)
|
| 164 |
-
|
| 165 |
-
# To access the audio data from the TAR archives using the download manager,
|
| 166 |
-
# we have to use the dl_manager.iter_archive method
|
| 167 |
-
#
|
| 168 |
-
# This is because dl_manager.download_and_extract
|
| 169 |
-
# doesn't work to stream TAR archives in streaming mode.
|
| 170 |
-
# (we have to stream the files of a TAR archive one by one)
|
| 171 |
-
#
|
| 172 |
-
# The iter_archive method returns an iterable of (path_within_archive, file_obj) for every
|
| 173 |
-
# file in a TAR archive.
|
| 174 |
-
splits_to_names = {
|
| 175 |
-
"train": datasets.Split.TRAIN,
|
| 176 |
-
"validation": datasets.Split.VALIDATION,
|
| 177 |
-
"test": datasets.Split.TEST,
|
| 178 |
-
}
|
| 179 |
-
split_generators = []
|
| 180 |
-
for split in splits_to_configs:
|
| 181 |
-
split_generators.append(
|
| 182 |
-
datasets.SplitGenerator(
|
| 183 |
-
name=splits_to_names[split],
|
| 184 |
-
gen_kwargs={
|
| 185 |
-
"local_extracted_archive_paths": local_extracted_archive_paths[split],
|
| 186 |
-
# use iter_archive here to access the files in the TAR archives:
|
| 187 |
-
"archives": [dl_manager.iter_archive(path) for path in audio_archive_paths[split]],
|
| 188 |
-
"manifest_path": manifest_paths[split],
|
| 189 |
-
}
|
| 190 |
-
)
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
return split_generators
|
| 194 |
-
|
| 195 |
-
def _generate_examples(self, local_extracted_archive_paths, archives, manifest_path):
|
| 196 |
-
meta = dict()
|
| 197 |
-
with open(manifest_path, "r", encoding="utf-8") as f:
|
| 198 |
-
for line in tqdm(f, desc="reading metadata file"):
|
| 199 |
-
sample_meta = json.loads(line)
|
| 200 |
-
_id = sample_meta["audio_document_id"]
|
| 201 |
-
texts = sample_meta["training_data"]["label"]
|
| 202 |
-
audio_filenames = sample_meta["training_data"]["name"]
|
| 203 |
-
durations = sample_meta["training_data"]["duration_ms"]
|
| 204 |
-
for audio_filename, text, duration in zip(audio_filenames, texts, durations):
|
| 205 |
-
audio_filename = audio_filename.lstrip("./")
|
| 206 |
-
meta[audio_filename] = {
|
| 207 |
-
"audio_document_id": _id,
|
| 208 |
-
"text": text,
|
| 209 |
-
"duration_ms": duration
|
| 210 |
-
}
|
| 211 |
-
|
| 212 |
-
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
|
| 213 |
-
# Here we iterate over all the files within the TAR archive:
|
| 214 |
-
for audio_filename, audio_file in archive:
|
| 215 |
-
audio_filename = audio_filename.lstrip("./")
|
| 216 |
-
# if an audio file exists locally (i.e. in default, non-streaming mode) set the full path to it
|
| 217 |
-
# joining path to directory that the archive was extracted to and audio filename.
|
| 218 |
-
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path \
|
| 219 |
-
else audio_filename
|
| 220 |
-
yield audio_filename, {
|
| 221 |
-
"id": audio_filename,
|
| 222 |
-
"audio": {"path": path, "bytes": audio_file.read()},
|
| 223 |
-
"text": meta[audio_filename]["text"],
|
| 224 |
-
"duration_ms": meta[audio_filename]["duration_ms"]
|
| 225 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|