Upload my_dataset.py with huggingface_hub
Browse files- my_dataset.py +114 -0
my_dataset.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import datasets
|
| 4 |
+
from tqdm import tqdm # لإظهار تقدم القراءة في ملفات metadata
|
| 5 |
+
|
| 6 |
+
_DESCRIPTION = "A speech dataset designed for automatic speech recognition (ASR), structured like Mozilla Common Voice."
|
| 7 |
+
_CITATION = "No citation available yet."
|
| 8 |
+
|
| 9 |
+
class MyDatasetConfig(datasets.BuilderConfig):
|
| 10 |
+
def __init__(self, **kwargs):
|
| 11 |
+
super(MyDatasetConfig, self).__init__(**kwargs)
|
| 12 |
+
|
| 13 |
+
class MyDataset(datasets.GeneratorBasedBuilder):
|
| 14 |
+
DEFAULT_WRITER_BATCH_SIZE = 1000 # مثل Common Voice
|
| 15 |
+
|
| 16 |
+
BUILDER_CONFIGS = [
|
| 17 |
+
MyDatasetConfig(
|
| 18 |
+
name="default",
|
| 19 |
+
version=datasets.Version("1.0.0"),
|
| 20 |
+
description=_DESCRIPTION,
|
| 21 |
+
),
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
def _info(self):
|
| 25 |
+
features = datasets.Features({
|
| 26 |
+
"client_id": datasets.Value("string"),
|
| 27 |
+
"path": datasets.Value("string"),
|
| 28 |
+
"audio": datasets.features.Audio(sampling_rate=16000),
|
| 29 |
+
"text": datasets.Value("string"),
|
| 30 |
+
"up_votes": datasets.Value("int64"),
|
| 31 |
+
"down_votes": datasets.Value("int64"),
|
| 32 |
+
"age": datasets.Value("string"),
|
| 33 |
+
"gender": datasets.Value("string"),
|
| 34 |
+
"accent": datasets.Value("string"),
|
| 35 |
+
"locale": datasets.Value("string"),
|
| 36 |
+
"segment": datasets.Value("string"),
|
| 37 |
+
"variant": datasets.Value("string"),
|
| 38 |
+
})
|
| 39 |
+
|
| 40 |
+
return datasets.DatasetInfo(
|
| 41 |
+
description=_DESCRIPTION,
|
| 42 |
+
features=features,
|
| 43 |
+
supervised_keys=None,
|
| 44 |
+
citation=_CITATION,
|
| 45 |
+
version=self.config.version,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def _split_generators(self, dl_manager):
|
| 49 |
+
data_dir = self.config.data_dir
|
| 50 |
+
|
| 51 |
+
splits = ["train", "validation", "test"]
|
| 52 |
+
split_generators = []
|
| 53 |
+
|
| 54 |
+
for split in splits:
|
| 55 |
+
audio_tar = os.path.join(data_dir, f"{split}_audio")
|
| 56 |
+
metadata_csv = os.path.join(data_dir, f"{split}_metadata.csv")
|
| 57 |
+
|
| 58 |
+
if os.path.exists(audio_tar) and os.path.exists(metadata_csv):
|
| 59 |
+
split_generators.append(
|
| 60 |
+
datasets.SplitGenerator(
|
| 61 |
+
name=getattr(datasets.Split, split.upper()),
|
| 62 |
+
gen_kwargs={
|
| 63 |
+
"archives": dl_manager.iter_archive(audio_tar),
|
| 64 |
+
"metadata_path": metadata_csv,
|
| 65 |
+
},
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return split_generators
|
| 70 |
+
|
| 71 |
+
def _generate_examples(self, archives, metadata_path):
|
| 72 |
+
# قراءة الميتاداتا في dict
|
| 73 |
+
metadata = {}
|
| 74 |
+
data_fields = list(self._info().features.keys())
|
| 75 |
+
|
| 76 |
+
with open(metadata_path, encoding="utf-8-sig") as f:
|
| 77 |
+
reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE)
|
| 78 |
+
reader.fieldnames = [name.strip().replace('"', '') for name in reader.fieldnames]
|
| 79 |
+
|
| 80 |
+
for row in tqdm(reader, desc="Loading metadata..."):
|
| 81 |
+
row = {k.replace('"', ''): v.replace('"', '') for k, v in row.items()}
|
| 82 |
+
if not row["file_name"].endswith(".wav"):
|
| 83 |
+
row["file_name"] += ".wav"
|
| 84 |
+
|
| 85 |
+
# تحويل accents إلى accent (كما في Common Voice 8.0)
|
| 86 |
+
if "accents" in row:
|
| 87 |
+
row["accent"] = row["accents"]
|
| 88 |
+
del row["accents"]
|
| 89 |
+
|
| 90 |
+
# ملء الحقول الناقصة بقيم فارغة أو افتراضية
|
| 91 |
+
for field in data_fields:
|
| 92 |
+
if field not in row:
|
| 93 |
+
# للأعداد (up_votes, down_votes) نضع صفر، الباقي فراغ
|
| 94 |
+
if field in ["up_votes", "down_votes"]:
|
| 95 |
+
row[field] = 0
|
| 96 |
+
else:
|
| 97 |
+
row[field] = ""
|
| 98 |
+
|
| 99 |
+
metadata[row["file_name"]] = row
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# قراءة ملفات الصوت من الأرشيف وتوليد الأمثلة
|
| 103 |
+
for i, audio_archive in enumerate(archives):
|
| 104 |
+
for path_in_tar, file_obj in audio_archive:
|
| 105 |
+
_, filename = os.path.split(path_in_tar)
|
| 106 |
+
|
| 107 |
+
if filename in metadata:
|
| 108 |
+
example = dict(metadata[filename])
|
| 109 |
+
|
| 110 |
+
# ضبط مسار الصوت (لتحميله محلياً أو عبر streaming)
|
| 111 |
+
example["audio"] = {"path": path_in_tar, "bytes": file_obj.read()}
|
| 112 |
+
example["path"] = path_in_tar
|
| 113 |
+
|
| 114 |
+
yield path_in_tar, example
|