import os import csv import datasets from tqdm import tqdm # لإظهار تقدم القراءة في ملفات metadata _DESCRIPTION = "A speech dataset designed for automatic speech recognition (ASR), structured like Mozilla Common Voice." _CITATION = "No citation available yet." class MyDatasetConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(MyDatasetConfig, self).__init__(**kwargs) class MyDataset(datasets.GeneratorBasedBuilder): DEFAULT_WRITER_BATCH_SIZE = 1000 # مثل Common Voice BUILDER_CONFIGS = [ MyDatasetConfig( name="default", version=datasets.Version("1.0.0"), description=_DESCRIPTION, ), ] def _info(self): features = datasets.Features({ "client_id": datasets.Value("string"), "path": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16000), "text": datasets.Value("string"), "up_votes": datasets.Value("int64"), "down_votes": datasets.Value("int64"), "age": datasets.Value("string"), "gender": datasets.Value("string"), "accent": datasets.Value("string"), "locale": datasets.Value("string"), "segment": datasets.Value("string"), "variant": datasets.Value("string"), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, citation=_CITATION, version=self.config.version, ) def _split_generators(self, dl_manager): data_dir = self.config.data_dir splits = ["train", "validation", "test"] split_generators = [] for split in splits: audio_tar = os.path.join(data_dir, f"{split}_audio") metadata_csv = os.path.join(data_dir, f"{split}_metadata.csv") if os.path.exists(audio_tar) and os.path.exists(metadata_csv): split_generators.append( datasets.SplitGenerator( name=getattr(datasets.Split, split.upper()), gen_kwargs={ "archives": dl_manager.iter_archive(audio_tar), "metadata_path": metadata_csv, }, ) ) return split_generators def _generate_examples(self, archives, metadata_path): # قراءة الميتاداتا في dict metadata = {} data_fields = list(self._info().features.keys()) with open(metadata_path, encoding="utf-8-sig") as f: reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE) reader.fieldnames = [name.strip().replace('"', '') for name in reader.fieldnames] for row in tqdm(reader, desc="Loading metadata..."): row = {k.replace('"', ''): v.replace('"', '') for k, v in row.items()} if not row["file_name"].endswith(".wav"): row["file_name"] += ".wav" # تحويل accents إلى accent (كما في Common Voice 8.0) if "accents" in row: row["accent"] = row["accents"] del row["accents"] # ملء الحقول الناقصة بقيم فارغة أو افتراضية for field in data_fields: if field not in row: # للأعداد (up_votes, down_votes) نضع صفر، الباقي فراغ if field in ["up_votes", "down_votes"]: row[field] = 0 else: row[field] = "" metadata[row["file_name"]] = row # قراءة ملفات الصوت من الأرشيف وتوليد الأمثلة for i, audio_archive in enumerate(archives): for path_in_tar, file_obj in audio_archive: _, filename = os.path.split(path_in_tar) if filename in metadata: example = dict(metadata[filename]) # ضبط مسار الصوت (لتحميله محلياً أو عبر streaming) example["audio"] = {"path": path_in_tar, "bytes": file_obj.read()} example["path"] = path_in_tar yield path_in_tar, example