--- license: cc0-1.0 tags: - security - cybersecurity - cve - cisa - kev - nvd - parquet - rag - public-domain pretty_name: CVE-KEV Snapshot (2025-09-04) viewer: true configs: - config_name: preview data_files: - split: train path: parquet/preview.parquet - config_name: cve data_files: - split: train path: parquet/cve.parquet - config_name: nvd_meta data_files: - split: train path: parquet/nvd_meta.parquet - config_name: kev data_files: - split: train path: parquet/kev.parquet - config_name: edges data_files: - split: train path: parquet/edges.parquet - config_name: rag_meta data_files: - split: train path: rag/meta.parquet - config_name: rag_mapping data_files: - split: train path: rag/mapping.parquet --- ## CVE-KEV Snapshot (one-time, offline bundle) This bundle lets you rank likely exploited CVEs and cite official sources without any APIs or accounts, fully offline. It’s a one-time snapshot of the last 90 days of NVD, aligned with CISA KEV for immediate focus on likely exploited CVEs. Query-ready Parquet tables and an optional small RAG pack let you rank by severity, pivot by CWE, and fetch references for briefings. Every row includes provenance; validation metrics and an integrity manifest are included. The compiled dataset is dedicated to the public domain (CC0). ## Quick start (60 seconds) - Open `demo/OVX_quickstart.html` (no network) or [demo/OVX_quickstart.ipynb](demo/OVX_quickstart.ipynb). - Or run this DuckDB query for top KEV CVEs by severity: ```sql SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; ``` ## Snapshot - Snapshot as of (UTC): 2025-09-05T02:12:27Z - NVD window (days): 90 ## Accuracy at a glance - Total CVE rows: 11,344 - Total KEV rows: 27 - Artifacts: [Validation Report](docs/VALIDATION.json) · [Integrity Check](docs/INTEGRITY.txt) · [Build Manifest](docs/BUILD_MANIFEST.json) - KEV is window‑aligned; within‑window coverage = 1.0 by design. See `docs/VALIDATION.json` for `kev_rows_total_fetched`, `kev_rows_within_window`, `kev_rows_filtered_out`, and `kev_within_window_over_global_ratio`. ## Contents - `parquet/`: `cve.parquet`, `nvd_meta.parquet`, `kev.parquet`, `edges.parquet`, `preview.parquet` (~1000 CVEs; see preview criteria) - `rag/` (optional): `index.faiss`, `meta.parquet`, `mapping.parquet`, `vectors.npy` - `docs/`: `LICENSES.md`, `LICENCE.md` (CC0 legal code), `NOTICE.md`, `INTEGRITY.txt`, `VALIDATION.json`, `BUILD_MANIFEST.json` - `demo/`: `OVX_quickstart.ipynb`, `OVX_quickstart.html` ## RAG note Optional RAG pack built from PD/CC0 text using `BAAI/bge-small-en-v1.5` (384‑dim), normalized vectors with inner product (cosine) similarity. Retrieval is offline-only; query embedding requires the model to be already cached locally. ## Preview parquet - [parquet/preview.parquet](parquet/preview.parquet) is a convenience subset for quick inspection. - Selection: first 1000 rows by `cve_id` ordering from `parquet/cve.parquet`. - Columns: `cve_id`, `summary`, `published_date`, `modified_date` (when available); falls back to a best‑effort subset if needed. ## Validation, integrity, build metadata - `docs/VALIDATION.json` includes: counts, `cvss_v3_presence_ratio`, `cwe_presence_ratio`, `kev_cve_coverage_ratio`, `kev_cve_coverage_ratio_within_window`, `kev_rows_total_fetched`, `kev_rows_within_window`, `kev_within_window_over_global_ratio`, `rejected_cve_count`, `url_shape_failures`, `http_head_failures_hard`, `http_head_failures_flaky`, `dead_reference_links`, `duplicate_edges_dropped`, `snapshot_as_of`. - URL checks (if present) were executed conservatively with a single worker. - Verify integrity locally: - macOS: `shasum -a 256 -c docs/INTEGRITY.txt` - Linux: `sha256sum -c docs/INTEGRITY.txt` - Build metadata (transparency): see `docs/BUILD_MANIFEST.json` for snapshot parameters (timestamp, NVD window, tool/version info, internal commit/config). Provided for transparency; the build system is not included. ## Storage and performance - Parquet compression: `snappy`. - Disk footprint varies by window size; see file sizes before downloading. ## Limitations - Some CVEs may lack CVSS vectors/scores within the window (nulls are expected). - URL checks are conservative and may still include dead/redirected links; verify with official sources. - KEV rows are filtered to the NVD window; counts reflect in‑window coverage, not global totals. ## Usage - DuckDB ```sql SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; ``` - Python (Pandas) ```python import pandas as pd k = pd.read_parquet('parquet/kev.parquet') c = pd.read_parquet('parquet/cve.parquet') m = pd.read_parquet('parquet/nvd_meta.parquet') df = k.merge(c, on='cve_id').merge(m[['cve_id','cvss_v3_score']], on='cve_id', how='left') print(df.head()) ``` - Python (Polars) ```python import polars as pl k = pl.read_parquet('parquet/kev.parquet') c = pl.read_parquet('parquet/cve.parquet') m = pl.read_parquet('parquet/nvd_meta.parquet').select('cve_id','cvss_v3_score') df = k.join(c, on='cve_id').join(m, on='cve_id', how='left') print(df.head()) ``` ## Non-affiliation and licensing - Not affiliated with NIST/NVD, CISA/KEV, or FIRST/EPSS. - NVD non-endorsement: "This product uses data from the NVD API but is not endorsed or certified by the NVD." - Compiled artifact dedicated to the public domain under CC0 1.0 (see `docs/LICENCE.md`). - Upstream sources: NVD (public domain), CISA KEV (CC0). Linked third‑party pages (vendor advisories, blogs, etc.) are governed by their own terms. ## Citation If you use this snapshot, please cite: ``` "CVE-KEV Snapshot (${snapshot_as_of})", CC0-1.0, https://huggingface.co/datasets/NostromoHub/cve-kev-snapshot-90d-2025-09-04 ```