--- license: cc0-1.0 tags: - security - cybersecurity - cve - cisa - kev - nvd - parquet - rag - public-domain pretty_name: CVE-KEV Snapshot (2025-10-29) viewer: true configs: - config_name: preview data_files: - split: train path: parquet/preview.parquet - config_name: cve data_files: - split: train path: parquet/cve.parquet - config_name: nvd_meta data_files: - split: train path: parquet/nvd_meta.parquet - config_name: kev data_files: - split: train path: parquet/kev.parquet - config_name: edges data_files: - split: train path: parquet/edges.parquet - config_name: rag_meta data_files: - split: train path: rag/meta.parquet - config_name: rag_mapping data_files: - split: train path: rag/mapping.parquet --- # CVE-KEV Snapshot (one-time, offline bundle) This bundle lets you rank likely exploited CVEs and cite official sources without any APIs or accounts, fully offline. It’s a one-time snapshot of the last 90 days of NVD, aligned with CISA KEV for immediate focus on likely exploited CVEs. Query-ready Parquet tables and an optional small RAG pack let you rank by severity, pivot by CWE, and fetch references for briefings. Every row includes provenance; validation metrics and an integrity manifest are included. The compiled dataset is dedicated to the public domain (CC0). ## Quick start (60 seconds) - Open `demo/OVX_quickstart.html` (no network) or `demo/OVX_quickstart.ipynb`. - Or run this DuckDB query for top KEV CVEs by severity: ```sql SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; ``` Snapshot as of (UTC): 2025-10-29T13:51:37Z NVD window (days): 90 ## Accuracy at a glance - Total CVE rows: 12307 - Total KEV rows: 28 - Artifacts: [Validation Report](docs/VALIDATION.json) · [Integrity Check](docs/INTEGRITY.txt) · [Build Manifest](docs/BUILD_MANIFEST.json) - KEV is window‑aligned; within‑window coverage = 1.0 by design. See `docs/VALIDATION.json` for `kev_rows_total_fetched`, `kev_rows_within_window`, `kev_rows_filtered_out`, and `kev_within_window_over_global_ratio`. ## What this is A single, immutable dataset combining: - CVE records (IDs, summaries) with CVSS and CWE from NVD (public domain) - KEV flags from CISA (CC0) - Provenance on every row and edge (source, source_url, retrieved_at, source_record_hash) - A tiny RAG pack (embeddings + FAISS index) built only from PD/CC0 text ## Who this is for - Security ML teams: feature prototyping (KEV=true, CVSS, CWE signals) - RAG/QA prototypers: grounded retrieval with official citations - Analysts: local, verifiable artifact (no APIs/accounts) ## What you can do quickly (offline) - Rank KEV CVEs by severity; pivot by CWE categories - Retrieve references for a CVE (official NVD/KEV links) - Trial RAG with a tiny index (if the embedding model is cached locally) - Inspect validation metrics and per-row provenance ## Files - parquet/: cve.parquet, nvd_meta.parquet, kev.parquet, edges.parquet, preview.parquet (~1000 CVEs; see preview criteria) - rag/: index.faiss, meta.parquet, mapping.parquet, vectors.npy (optional) - docs/: LICENSES.md, LICENCE.md (CC0 legal code), NOTICE.md, INTEGRITY.txt, VALIDATION.json (if enabled), BUILD_MANIFEST.json - demo/: OVX_quickstart.ipynb (offline quickstart) ## Validation and integrity - VALIDATION.json includes: counts, cvss_v3_presence_ratio, cwe_presence_ratio, kev_cve_coverage_ratio, kev_cve_coverage_ratio_within_window, kev_rows_total_fetched, kev_rows_within_window, kev_within_window_over_global_ratio, rejected_cve_count, url_shape_failures, http_head_failures_hard, http_head_failures_flaky, dead_reference_links, duplicate_edges_dropped, snapshot_as_of - URL checks (if present in this snapshot’s validation step) were executed conservatively with a single worker to reduce flakiness and rate limiting. - INTEGRITY.txt: SHA-256 list of all files in this bundle. Verify locally: - macOS: ```bash shasum -a 256 -c docs/INTEGRITY.txt ``` - Linux: ```bash sha256sum -c docs/INTEGRITY.txt ``` - Build metadata: see `docs/BUILD_MANIFEST.json` for snapshot parameters (timestamp, NVD window, tool/version info, internal commit/config). Provided for transparency; the build system is not included. ## RAG constraints - Texts are PD/CC0-only (NVD short descriptions, KEV notes) - meta.parquet: normalize=true, metric="IP", pinned model_name="BAAI/bge-small-en-v1.5" and dimension=384 - Retrieval requires the model to be present in local cache; no downloads - If `rag/mapping.parquet` is present, it maps FAISS `row_index` → `cve_id` with columns: `row_index` (int32), `cve_id` (string) ## Preview parquet - `parquet/preview.parquet` is a convenience subset for quick inspection. - Selection: first 1000 rows by `cve_id` ordering from `parquet/cve.parquet`. - Columns: `cve_id`, `summary`, `published_date`, `modified_date` (when available); otherwise falls back to a best-effort subset. ## Non-affiliation and license - Not affiliated with NIST/NVD, CISA/KEV, or FIRST/EPSS - NVD non-endorsement: "This product uses data from the NVD API but is not endorsed or certified by the NVD." - Compiled artifact dedicated to the public domain under CC0 1.0 (see docs/LICENCE.md) - Upstream sources: NVD (public domain), CISA KEV (CC0). Third‑party pages reached via reference URLs are governed by their own terms ## Start here - Open [demo/OVX_quickstart.ipynb](demo/OVX_quickstart.ipynb) (no network calls) - Or open [demo/OVX_quickstart.html](demo/OVX_quickstart.html) for a view-only quickstart - Or query with DuckDB directly: ``` SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; ``` ### Top queries to try (DuckDB) ```sql -- Top KEV CVEs by CVSS SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; -- Count malformed or missing CVSS SELECT SUM(cvss_v3_score IS NULL) AS missing_cvss_v3, COUNT(*) AS total FROM read_parquet('parquet/nvd_meta.parquet'); -- Top CWE categories by count WITH u AS ( SELECT UNNEST(cwe_ids) AS cwe FROM read_parquet('parquet/nvd_meta.parquet') ) SELECT cwe, COUNT(*) AS cnt FROM u GROUP BY cwe ORDER BY cnt DESC LIMIT 20; -- References for a specific CVE SELECT dst_id AS reference_url FROM read_parquet('parquet/edges.parquet') WHERE src_type='cve' AND src_id='CVE-2021-44228' AND edge_type='cve_ref_url' ORDER BY reference_url; ``` ## Validation notes - Where URL reachability checks were included, they used a single worker by default and domain-specific pacing (e.g., stricter for `vuldb.com`). Counts of malformed URLs and network failures are summarized in `docs/VALIDATION.json`. ## Limitations - Some CVEs may lack CVSS vectors/scores in the NVD window (nulls are expected). - URL checks are conservative and may still include dead or redirected links; always verify with official sources. - KEV rows are filtered to the NVD window by design; KEV counts reflect in-window coverage, not global totals. ## Scope and KEV alignment - KEV is filtered to the same NVD window; only KEV CVEs that are also in the NVD window are included. Edges never reference out‑of‑window CVEs. - Coverage metric naming: `kev_cve_coverage_ratio_within_window` reflects this alignment and is expected to be 1.0 by design. The legacy key `kev_cve_coverage_ratio` is retained and equals the within-window value. - Global context ratio: `kev_within_window_over_global_ratio = kev_rows_within_window / kev_rows_total_fetched` (share of KEV entries that fall into this snapshot’s NVD window). ## Schemas (columns and types) - parquet/cve.parquet - cve_id: string - summary: string - description_hash: string - published_date: timestamp[us, UTC] - modified_date: timestamp[us, UTC] - is_rejected: boolean - source: string - source_url: string - retrieved_at: timestamp[us, UTC] - source_record_hash: string - parquet/nvd_meta.parquet - cve_id: string - cvss_v3_score: float64 (nullable) - cvss_v3_vector: string (nullable) - cvss_v2_score: float64 (nullable) - cwe_ids: list - reference_urls: list - ref_tags: list - source: string - source_url: string - retrieved_at: timestamp[us, UTC] - source_record_hash: string - parquet/kev.parquet - cve_id: string - date_added: date32[day] - notes: string (nullable) - source: string - source_url: string - retrieved_at: timestamp[us, UTC] - source_record_hash: string - parquet/edges.parquet - src_type: string - src_id: string - edge_type: string - dst_type: string - dst_id: string - source: string - source_url: string - retrieved_at: timestamp[us, UTC] - rag/meta.parquet - model_name: string - dim: int32 - normalize: boolean - metric: string - texts_count: int64 ## Storage and performance notes - Parquet compression: `snappy` (writer default). - Disk footprint: varies by window; see your build output directory sizes to estimate download needs. ### Uniqueness rules - Primary keys: - `cve.parquet`: `cve_id` - `nvd_meta.parquet`: `cve_id` - `kev.parquet`: `cve_id` - Edges composite uniqueness: - Unique on (`src_type`, `src_id`, `edge_type`, `dst_type`, `dst_id`, `source`) - Duplicates are dropped; see `duplicate_edges_dropped` in `docs/VALIDATION.json`. ## Citation If you use this snapshot, please cite: ``` "CVE-KEV Snapshot (2025-10-29T13:51:37Z)", CC0-1.0, https://huggingface.co/datasets/NostromoHub/cve-kev-snapshot-90d-2025-10-29 ``` ## Usage - DuckDB ```sql SELECT c.cve_id, m.cvss_v3_score, k.date_added FROM read_parquet('parquet/kev.parquet') k JOIN read_parquet('parquet/cve.parquet') c USING (cve_id) LEFT JOIN read_parquet('parquet/nvd_meta.parquet') m USING (cve_id) ORDER BY (m.cvss_v3_score IS NULL) ASC, m.cvss_v3_score DESC, k.date_added DESC LIMIT 20; ``` - Python (Pandas) ```python import pandas as pd k = pd.read_parquet('parquet/kev.parquet') c = pd.read_parquet('parquet/cve.parquet') m = pd.read_parquet('parquet/nvd_meta.parquet') df = k.merge(c, on='cve_id').merge(m[['cve_id','cvss_v3_score']], on='cve_id', how='left') print(df.head()) ``` - Python (Polars) ```python import polars as pl k = pl.read_parquet('parquet/kev.parquet') c = pl.read_parquet('parquet/cve.parquet') m = pl.read_parquet('parquet/nvd_meta.parquet').select('cve_id','cvss_v3_score') df = k.join(c, on='cve_id').join(m, on='cve_id', how='left') print(df.head()) ```