Update hard_scatter/ttbar/v1 dataset card
Browse files
README.md
CHANGED
|
@@ -16,13 +16,11 @@ size_categories:
|
|
| 16 |
configs:
|
| 17 |
- config_name: particles
|
| 18 |
data_files:
|
| 19 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events0-9.parquet"
|
| 20 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events1000-1999.parquet"
|
| 21 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet"
|
| 22 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events9000-9999.parquet"
|
| 23 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events10000-10999.parquet"
|
| 24 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events11000-11999.parquet"
|
| 25 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events15000-15999.parquet"
|
|
|
|
| 26 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events24000-24999.parquet"
|
| 27 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events25000-25999.parquet"
|
| 28 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events28000-28999.parquet"
|
|
@@ -43,17 +41,16 @@ configs:
|
|
| 43 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events78000-78999.parquet"
|
| 44 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events83000-83999.parquet"
|
| 45 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events88000-88999.parquet"
|
|
|
|
| 46 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events92000-92999.parquet"
|
| 47 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events97000-97999.parquet"
|
| 48 |
- config_name: tracker_hits
|
| 49 |
data_files:
|
| 50 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events0-9.parquet"
|
| 51 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events1000-1999.parquet"
|
| 52 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events2000-2999.parquet"
|
| 53 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events9000-9999.parquet"
|
| 54 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events10000-10999.parquet"
|
| 55 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events11000-11999.parquet"
|
| 56 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events15000-15999.parquet"
|
|
|
|
| 57 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events24000-24999.parquet"
|
| 58 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events25000-25999.parquet"
|
| 59 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events28000-28999.parquet"
|
|
@@ -74,17 +71,16 @@ configs:
|
|
| 74 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events78000-78999.parquet"
|
| 75 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events83000-83999.parquet"
|
| 76 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events88000-88999.parquet"
|
|
|
|
| 77 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events92000-92999.parquet"
|
| 78 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events97000-97999.parquet"
|
| 79 |
- config_name: calo_hits
|
| 80 |
data_files:
|
| 81 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events0-9.parquet"
|
| 82 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events1000-1999.parquet"
|
| 83 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events2000-2999.parquet"
|
| 84 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events9000-9999.parquet"
|
| 85 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events10000-10999.parquet"
|
| 86 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events11000-11999.parquet"
|
| 87 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events15000-15999.parquet"
|
|
|
|
| 88 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events24000-24999.parquet"
|
| 89 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events25000-25999.parquet"
|
| 90 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events28000-28999.parquet"
|
|
@@ -105,17 +101,16 @@ configs:
|
|
| 105 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events78000-78999.parquet"
|
| 106 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events83000-83999.parquet"
|
| 107 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events88000-88999.parquet"
|
|
|
|
| 108 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events92000-92999.parquet"
|
| 109 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events97000-97999.parquet"
|
| 110 |
- config_name: tracks
|
| 111 |
data_files:
|
| 112 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events0-9.parquet"
|
| 113 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events1000-1999.parquet"
|
| 114 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events2000-2999.parquet"
|
| 115 |
-
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events9000-9999.parquet"
|
| 116 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events10000-10999.parquet"
|
| 117 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events11000-11999.parquet"
|
| 118 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events15000-15999.parquet"
|
|
|
|
| 119 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events24000-24999.parquet"
|
| 120 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events25000-25999.parquet"
|
| 121 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events28000-28999.parquet"
|
|
@@ -136,26 +131,26 @@ configs:
|
|
| 136 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events78000-78999.parquet"
|
| 137 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events83000-83999.parquet"
|
| 138 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events88000-88999.parquet"
|
|
|
|
| 139 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events92000-92999.parquet"
|
| 140 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events97000-97999.parquet"
|
| 141 |
---
|
| 142 |
|
| 143 |
-
# ColliderML: Top-Quark Pair Production
|
| 144 |
|
| 145 |
## Dataset Description
|
| 146 |
|
| 147 |
-
This dataset contains simulated high-energy physics collision events
|
| 148 |
|
| 149 |
### Dataset Summary
|
| 150 |
|
| 151 |
- **Campaign**: `hard_scatter`
|
| 152 |
-
- **Process**: Top-quark pair
|
| 153 |
- **Version**: `v1`
|
| 154 |
-
- **
|
| 155 |
-
- **Pileup**: 0 (no additional interactions)
|
| 156 |
- **Detector**: Open Data Detector (ODD)
|
| 157 |
- **Format**: Apache Parquet with list columns for variable-length data
|
| 158 |
-
- **License**:
|
| 159 |
|
| 160 |
### Supported Tasks
|
| 161 |
|
|
@@ -163,446 +158,99 @@ This dataset is designed for machine learning tasks in high-energy physics, incl
|
|
| 163 |
|
| 164 |
- **Particle tracking**: Reconstruct charged particle trajectories from detector hits
|
| 165 |
- **Track-to-particle matching**: Associate reconstructed tracks with truth particles
|
| 166 |
-
- **Jet tagging**: Identify jets originating from
|
| 167 |
- **Energy reconstruction**: Predict particle energies from calorimeter deposits
|
| 168 |
-
- **Physics analysis**: Event classification
|
| 169 |
- **Representation learning**: Study hierarchical information at different detector levels
|
| 170 |
|
| 171 |
-
### Languages
|
| 172 |
-
|
| 173 |
-
N/A (Physics data)
|
| 174 |
-
|
| 175 |
## Dataset Structure
|
| 176 |
|
| 177 |
-
### Data
|
| 178 |
-
|
| 179 |
-
Each row in the Parquet files represents a single collision event. Variable-length quantities (e.g., lists of particles, hits, tracks) are stored as Parquet list columns.
|
| 180 |
-
|
| 181 |
-
Example event structure:
|
| 182 |
-
|
| 183 |
-
```python
|
| 184 |
-
{
|
| 185 |
-
'event_id': 42,
|
| 186 |
-
'particle_id': [0, 1, 2, 3, ...], # List of particle IDs
|
| 187 |
-
'pdg_id': [11, -11, 211, ...], # Particle type codes
|
| 188 |
-
'px': [1.2, -0.5, 3.4, ...], # Momentum components (GeV)
|
| 189 |
-
'py': [0.8, 1.1, -0.3, ...],
|
| 190 |
-
'pz': [5.2, -2.1, 10.5, ...],
|
| 191 |
-
'energy': [5.5, 2.3, 11.2, ...],
|
| 192 |
-
# ... additional fields
|
| 193 |
-
}
|
| 194 |
-
```
|
| 195 |
-
|
| 196 |
-
### Data Fields
|
| 197 |
-
|
| 198 |
-
The dataset contains four data types organized by detector hierarchy:
|
| 199 |
-
|
| 200 |
-
#### 1. `particles` (Truth-level)
|
| 201 |
-
|
| 202 |
-
Truth information about generated particles before detector simulation.
|
| 203 |
-
|
| 204 |
-
| Field | Type | Description |
|
| 205 |
-
|-------|------|-------------|
|
| 206 |
-
| `event_id` | int64 | Unique event identifier |
|
| 207 |
-
| `particle_id` | list\<int64\> | Unique particle ID within event |
|
| 208 |
-
| `pdg_id` | list\<int64\> | PDG particle code (e.g., 11=electron, 13=muon, 211=pion) |
|
| 209 |
-
| `mass` | list\<float64\> | Particle rest mass (GeV/c²) |
|
| 210 |
-
| `energy` | list\<float64\> | Particle total energy (GeV) |
|
| 211 |
-
| `charge` | list\<float64\> | Electric charge (in units of e) |
|
| 212 |
-
| `px`, `py`, `pz` | list\<float64\> | Momentum components (GeV/c) |
|
| 213 |
-
| `vx`, `vy`, `vz` | list\<float64\> | Vertex position (mm) |
|
| 214 |
-
| `time` | list\<float64\> | Production time (ns) |
|
| 215 |
-
| `num_tracker_hits` | list\<int64\> | Number of hits in tracker |
|
| 216 |
-
| `num_calo_hits` | list\<int64\> | Number of hits in calorimeter |
|
| 217 |
-
| `vertex_primary` | list\<int64\> | Primary vertex flag (1=primary, 0=secondary) |
|
| 218 |
-
| `parent_id` | list\<float64\> | ID of parent particle |
|
| 219 |
-
|
| 220 |
-
**Typical event**: ~200-300 particles per event
|
| 221 |
-
|
| 222 |
-
#### 2. `tracker_hits` (Detector-level)
|
| 223 |
-
|
| 224 |
-
Digitized spatial measurements from the tracking detector (silicon sensors).
|
| 225 |
-
|
| 226 |
-
| Field | Type | Description |
|
| 227 |
-
|-------|------|-------------|
|
| 228 |
-
| `event_id` | int64 | Unique event identifier |
|
| 229 |
-
| `x`, `y`, `z` | list\<float64\> | Measured hit position (mm) |
|
| 230 |
-
| `true_x`, `true_y`, `true_z` | list\<float64\> | True (simulated) hit position before digitization (mm) |
|
| 231 |
-
| `time` | list\<float64\> | Hit time (ns) |
|
| 232 |
-
| `particle_id` | list\<int64\> | Truth particle that created this hit |
|
| 233 |
-
| `volume_id` | list\<int64\> | Detector volume identifier |
|
| 234 |
-
| `layer_id` | list\<int64\> | Detector layer number |
|
| 235 |
-
| `surface_id` | list\<int64\> | Sensor surface identifier |
|
| 236 |
-
| `cell_id` | list\<int64\> | Cell/pixel identifier |
|
| 237 |
-
| `detector` | list\<int64\> | Detector subsystem code |
|
| 238 |
-
|
| 239 |
-
**Typical event**: ~2,000-3,000 hits per event
|
| 240 |
-
|
| 241 |
-
#### 3. `calo_hits` (Calorimeter-level)
|
| 242 |
-
|
| 243 |
-
Energy deposits in the calorimeter system (electromagnetic + hadronic).
|
| 244 |
-
|
| 245 |
-
| Field | Type | Description |
|
| 246 |
-
|-------|------|-------------|
|
| 247 |
-
| `event_id` | int64 | Unique event identifier |
|
| 248 |
-
| `detector` | list\<string\> | Calorimeter subsystem name |
|
| 249 |
-
| `cell_id` | list\<string\> | Calorimeter cell identifier |
|
| 250 |
-
| `total_energy` | list\<float64\> | Total energy deposited in cell (GeV) |
|
| 251 |
-
| `x`, `y`, `z` | list\<float64\> | Cell center position (mm) |
|
| 252 |
-
| `contrib_particle_ids` | list\<list\<int64\>\> | IDs of particles contributing to this cell |
|
| 253 |
-
| `contrib_energies` | list\<list\<float64\>\> | Energy contribution from each particle (GeV) |
|
| 254 |
-
| `contrib_times` | list\<list\<float64\>\> | Time of each contribution (ns) |
|
| 255 |
-
|
| 256 |
-
**Note**: Nested lists for contributions (one cell can have multiple particle deposits).
|
| 257 |
-
|
| 258 |
-
**Typical event**: ~500-1,000 calorimeter cells with deposits
|
| 259 |
-
|
| 260 |
-
#### 4. `tracks` (Reconstruction-level)
|
| 261 |
-
|
| 262 |
-
Reconstructed particle tracks from pattern recognition and track fitting algorithms.
|
| 263 |
-
|
| 264 |
-
| Field | Type | Description |
|
| 265 |
-
|-------|------|-------------|
|
| 266 |
-
| `event_id` | int64 | Unique event identifier |
|
| 267 |
-
| `track_id` | list\<int64\> | Unique track identifier within event |
|
| 268 |
-
| `majority_particle_id` | list\<int64\> | Truth particle with most hits on this track |
|
| 269 |
-
| `d0` | list\<float64\> | Transverse impact parameter (mm) |
|
| 270 |
-
| `z0` | list\<float64\> | Longitudinal impact parameter (mm) |
|
| 271 |
-
| `phi` | list\<float64\> | Azimuthal angle (radians) |
|
| 272 |
-
| `theta` | list\<float64\> | Polar angle (radians) |
|
| 273 |
-
| `qop` | list\<float64\> | Charge divided by momentum (e/GeV) |
|
| 274 |
-
| `hit_ids` | list\<list\<int32\>\> | List of tracker hit IDs assigned to this track |
|
| 275 |
-
|
| 276 |
-
**Track parameters**: Standard ACTS track representation (perigee parameters at origin).
|
| 277 |
-
|
| 278 |
-
**Derived quantities**:
|
| 279 |
-
- Transverse momentum: `pt = abs(1/qop) * sin(theta)`
|
| 280 |
-
- Pseudorapidity: `eta = -ln(tan(theta/2))`
|
| 281 |
-
- Total momentum: `p = abs(1/qop)`
|
| 282 |
-
|
| 283 |
-
**Typical event**: ~100-150 reconstructed tracks per event
|
| 284 |
-
|
| 285 |
-
### Data Splits
|
| 286 |
-
|
| 287 |
-
Currently, the dataset does not have predefined train/validation/test splits. Users should implement their own splitting strategy based on their use case. Recommended approach:
|
| 288 |
-
|
| 289 |
-
```python
|
| 290 |
-
from sklearn.model_selection import train_test_split
|
| 291 |
-
|
| 292 |
-
# Example: 70% train, 15% validation, 15% test
|
| 293 |
-
all_events = list(range(29000))
|
| 294 |
-
train_val, test = train_test_split(all_events, test_size=0.15, random_state=42)
|
| 295 |
-
train, val = train_test_split(train_val, test_size=0.176, random_state=42) # 0.176 * 0.85 ≈ 0.15
|
| 296 |
-
```
|
| 297 |
-
|
| 298 |
-
## Dataset Creation
|
| 299 |
-
|
| 300 |
-
### Curation Rationale
|
| 301 |
-
|
| 302 |
-
This dataset was created to support machine learning research in high-energy physics, specifically for:
|
| 303 |
-
|
| 304 |
-
1. **Benchmarking tracking algorithms**: Compare traditional and ML-based track reconstruction methods
|
| 305 |
-
2. **Hierarchical representation learning**: Study information flow from detector hits → tracks → particles
|
| 306 |
-
3. **Physics analysis**: Develop ML models for event classification and particle identification
|
| 307 |
-
4. **Open science**: Provide publicly accessible, realistic detector simulation data
|
| 308 |
-
|
| 309 |
-
The ttbar process is chosen because:
|
| 310 |
-
- It produces complex final states with many particles
|
| 311 |
-
- It's a key signature at hadron colliders (LHC)
|
| 312 |
-
- Top quarks decay to b-quarks, W bosons, and ultimately jets and leptons
|
| 313 |
-
- Relevant for searches for new physics beyond the Standard Model
|
| 314 |
-
|
| 315 |
-
### Source Data
|
| 316 |
-
|
| 317 |
-
#### Initial Data Collection and Normalization
|
| 318 |
-
|
| 319 |
-
The data is generated through the following simulation chain:
|
| 320 |
-
|
| 321 |
-
1. **Event Generation**: ttbar events generated using a Monte Carlo event generator
|
| 322 |
-
2. **Detector Simulation**: Particle propagation through the Open Data Detector using ACTS
|
| 323 |
-
3. **Digitization**: Conversion of energy deposits to realistic detector signals
|
| 324 |
-
4. **Reconstruction**: Track finding and fitting using ACTS tracking algorithms
|
| 325 |
-
5. **Format Conversion**: EDM4HEP → Parquet using the ColliderML data pipeline
|
| 326 |
-
|
| 327 |
-
#### Who are the source data producers?
|
| 328 |
-
|
| 329 |
-
The data is produced by the **ColliderML collaboration** as part of the **ATLAS ITk ML Reconstruction** project at NERSC (National Energy Research Scientific Computing Center).
|
| 330 |
-
|
| 331 |
-
### Annotations
|
| 332 |
-
|
| 333 |
-
#### Annotation process
|
| 334 |
-
|
| 335 |
-
The dataset includes truth-level annotations automatically generated during the simulation:
|
| 336 |
-
|
| 337 |
-
- **Particle-level truth**: Generator-level particle information
|
| 338 |
-
- **Hit-to-particle associations**: Which particle created each detector hit
|
| 339 |
-
- **Track-to-particle matching**: `majority_particle_id` links reconstructed tracks to truth particles
|
| 340 |
|
| 341 |
-
|
| 342 |
-
- Track efficiency (did we reconstruct this particle?)
|
| 343 |
-
- Track purity (how many hits belong to the correct particle?)
|
| 344 |
-
- Fake rate (how many tracks are not matched to real particles?)
|
| 345 |
|
| 346 |
-
#### Who are the annotators?
|
| 347 |
|
| 348 |
-
|
| 349 |
|
| 350 |
-
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
|
| 354 |
-
|
|
|
|
| 355 |
|
| 356 |
-
|
| 357 |
|
| 358 |
-
|
|
|
|
| 359 |
|
| 360 |
-
|
| 361 |
-
- Education in HEP and ML
|
| 362 |
-
- Development of algorithms that may have broader applications (e.g., pattern recognition, tracking in medical imaging)
|
| 363 |
|
| 364 |
-
|
|
|
|
| 365 |
|
| 366 |
-
As a simulated dataset, biases may arise from:
|
| 367 |
|
| 368 |
-
|
| 369 |
-
2. **Detector simulation biases**: Approximations in material interactions, detector response
|
| 370 |
-
3. **Reconstruction biases**: Algorithm choices in track finding and fitting
|
| 371 |
-
4. **No pileup**: Real LHC data has 20-60 simultaneous collisions; this dataset has only 1
|
| 372 |
-
|
| 373 |
-
Users should be aware that models trained on this data may not generalize to:
|
| 374 |
-
- Real detector data (requires calibration and alignment)
|
| 375 |
-
- Different detector geometries
|
| 376 |
-
- Events with pileup
|
| 377 |
-
|
| 378 |
-
### Other Known Limitations
|
| 379 |
-
|
| 380 |
-
- **Limited statistics**: ~29,000 events is moderate for ML training (consider data augmentation)
|
| 381 |
-
- **Single physics process**: Only ttbar; does not include background processes
|
| 382 |
-
- **Idealized detector**: ODD is a generic detector, not an exact replica of ATLAS/CMS
|
| 383 |
-
- **No detector inefficiencies**: Assumes 100% hit efficiency (real detectors have dead regions)
|
| 384 |
-
|
| 385 |
-
## Additional Information
|
| 386 |
-
|
| 387 |
-
### Dataset Curators
|
| 388 |
-
|
| 389 |
-
This dataset is maintained by the ColliderML team:
|
| 390 |
-
|
| 391 |
-
- Primary contact: [[email protected]](mailto:[email protected])
|
| 392 |
-
- Collaboration: ATLAS ITk ML Reconstruction working group
|
| 393 |
-
- Infrastructure: NERSC (National Energy Research Scientific Computing Center)
|
| 394 |
-
|
| 395 |
-
### Licensing Information
|
| 396 |
-
|
| 397 |
-
This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
|
| 398 |
-
|
| 399 |
-
You are free to:
|
| 400 |
-
- **Share**: Copy and redistribute the material
|
| 401 |
-
- **Adapt**: Remix, transform, and build upon the material
|
| 402 |
-
|
| 403 |
-
Under the following terms:
|
| 404 |
-
- **Attribution**: You must give appropriate credit and indicate if changes were made
|
| 405 |
-
|
| 406 |
-
### Citation Information
|
| 407 |
-
|
| 408 |
-
If you use this dataset in your research, please cite:
|
| 409 |
-
|
| 410 |
-
```bibtex
|
| 411 |
-
@dataset{colliderml_ttbar_pu0_2024,
|
| 412 |
-
title={ColliderML: Top-Quark Pair Production Dataset (No Pileup)},
|
| 413 |
-
author={ColliderML Collaboration},
|
| 414 |
-
year={2024},
|
| 415 |
-
publisher={NERSC},
|
| 416 |
-
howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML_ttbar_pu0}},
|
| 417 |
-
note={Simulation performed using ACTS and the Open Data Detector}
|
| 418 |
-
}
|
| 419 |
-
```
|
| 420 |
-
|
| 421 |
-
### Contributions
|
| 422 |
|
| 423 |
-
|
| 424 |
|
| 425 |
-
|
| 426 |
-
- **Open Data Detector**: https://acts.readthedocs.io/en/latest/examples/open_data_detector.html
|
| 427 |
-
- **EDM4HEP**: https://edm4hep.web.cern.ch/
|
| 428 |
-
- **ColliderML Pipeline**: https://github.com/ATLAS-ITk-ML/colliderml
|
| 429 |
|
| 430 |
## How to Use This Dataset
|
| 431 |
|
| 432 |
### Loading the Dataset
|
| 433 |
|
| 434 |
-
The dataset is hosted on the NERSC public portal and can be streamed directly without downloading:
|
| 435 |
-
|
| 436 |
```python
|
| 437 |
from datasets import load_dataset
|
| 438 |
|
| 439 |
-
# Load
|
| 440 |
-
|
| 441 |
-
"OpenDataDetector/ColliderML_ttbar_pu0",
|
| 442 |
-
"particles",
|
| 443 |
-
split="train",
|
| 444 |
-
streaming=True
|
| 445 |
-
)
|
| 446 |
-
|
| 447 |
-
# Load tracker hits
|
| 448 |
-
tracker_hits_ds = load_dataset(
|
| 449 |
-
"OpenDataDetector/ColliderML_ttbar_pu0",
|
| 450 |
-
"tracker_hits",
|
| 451 |
-
split="train",
|
| 452 |
-
streaming=True
|
| 453 |
-
)
|
| 454 |
-
|
| 455 |
-
# Load calorimeter hits
|
| 456 |
-
calo_hits_ds = load_dataset(
|
| 457 |
-
"OpenDataDetector/ColliderML_ttbar_pu0",
|
| 458 |
-
"calo_hits",
|
| 459 |
-
split="train",
|
| 460 |
-
streaming=True
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
# Load reconstructed tracks
|
| 464 |
-
tracks_ds = load_dataset(
|
| 465 |
"OpenDataDetector/ColliderML_ttbar_pu0",
|
| 466 |
-
"
|
| 467 |
-
split="train"
|
| 468 |
-
streaming=True
|
| 469 |
)
|
| 470 |
-
```
|
| 471 |
-
|
| 472 |
-
### Example: Iterating Over Events
|
| 473 |
-
|
| 474 |
-
```python
|
| 475 |
-
import numpy as np
|
| 476 |
|
| 477 |
-
# Iterate over
|
| 478 |
-
for
|
| 479 |
event_id = event['event_id']
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
print(f"Event {event_id}: {n_particles} particles")
|
| 483 |
-
|
| 484 |
-
# Access list columns as numpy arrays
|
| 485 |
-
px = np.array(event['px'])
|
| 486 |
-
py = np.array(event['py'])
|
| 487 |
-
pz = np.array(event['pz'])
|
| 488 |
-
|
| 489 |
-
# Compute transverse momentum
|
| 490 |
-
pt = np.sqrt(px**2 + py**2)
|
| 491 |
-
print(f" Mean pt: {pt.mean():.2f} GeV")
|
| 492 |
```
|
| 493 |
|
| 494 |
-
###
|
| 495 |
|
| 496 |
```python
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
for event in tracks_ds.take(5):
|
| 500 |
-
# Get track parameters
|
| 501 |
-
qop = np.array(event['qop'])
|
| 502 |
-
theta = np.array(event['theta'])
|
| 503 |
-
phi = np.array(event['phi'])
|
| 504 |
-
|
| 505 |
-
# Compute derived quantities
|
| 506 |
-
pt = np.abs(1.0 / qop) * np.sin(theta)
|
| 507 |
-
eta = -np.log(np.tan(theta / 2.0))
|
| 508 |
-
|
| 509 |
-
print(f"Event {event['event_id']}: {len(qop)} tracks")
|
| 510 |
-
print(f" pt range: [{pt.min():.2f}, {pt.max():.2f}] GeV")
|
| 511 |
-
print(f" eta range: [{eta.min():.2f}, {eta.max():.2f}]")
|
| 512 |
-
```
|
| 513 |
-
|
| 514 |
-
### Example: Matching Tracks to Particles
|
| 515 |
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
# Process event-by-event
|
| 522 |
-
for particle_event, track_event in zip(particles, tracks):
|
| 523 |
-
assert particle_event['event_id'] == track_event['event_id']
|
| 524 |
-
|
| 525 |
-
# Create particle ID lookup
|
| 526 |
-
particle_ids = np.array(particle_event['particle_id'])
|
| 527 |
-
particle_pt = np.sqrt(
|
| 528 |
-
np.array(particle_event['px'])**2 +
|
| 529 |
-
np.array(particle_event['py'])**2
|
| 530 |
-
)
|
| 531 |
-
|
| 532 |
-
# Get track associations
|
| 533 |
-
track_particle_ids = np.array(track_event['majority_particle_id'])
|
| 534 |
-
|
| 535 |
-
# Find matched particles
|
| 536 |
-
for track_idx, pid in enumerate(track_particle_ids):
|
| 537 |
-
if pid in particle_ids:
|
| 538 |
-
particle_idx = np.where(particle_ids == pid)[0][0]
|
| 539 |
-
truth_pt = particle_pt[particle_idx]
|
| 540 |
-
|
| 541 |
-
# Compute reconstructed pt
|
| 542 |
-
qop = track_event['qop'][track_idx]
|
| 543 |
-
theta = track_event['theta'][track_idx]
|
| 544 |
-
reco_pt = abs(1.0 / qop) * np.sin(theta)
|
| 545 |
-
|
| 546 |
-
print(f"Track {track_idx}: truth pt = {truth_pt:.2f}, reco pt = {reco_pt:.2f} GeV")
|
| 547 |
```
|
| 548 |
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
The Parquet files are hosted at:
|
| 552 |
|
| 553 |
-
|
| 554 |
-
https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/
|
| 555 |
-
├── truth/
|
| 556 |
-
│ └── particles/
|
| 557 |
-
│ ├── hard_scatter.ttbar.v1.truth.particles.events0-9.parquet
|
| 558 |
-
│ ├── hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet
|
| 559 |
-
│ └── ... (29 files total, ~29,000 events)
|
| 560 |
-
├── reco/
|
| 561 |
-
│ ├── tracker_hits/
|
| 562 |
-
│ │ ├── hard_scatter.ttbar.v1.reco.tracker_hits.events0-9.parquet
|
| 563 |
-
│ │ └── ... (29 files)
|
| 564 |
-
│ ├── calo_hits/
|
| 565 |
-
│ │ ├── hard_scatter.ttbar.v1.reco.calo_hits.events0-9.parquet
|
| 566 |
-
│ │ └── ... (29 files)
|
| 567 |
-
│ └── tracks/
|
| 568 |
-
│ ├── hard_scatter.ttbar.v1.reco.tracks.events0-9.parquet
|
| 569 |
-
│ └── ... (29 files)
|
| 570 |
-
```
|
| 571 |
-
|
| 572 |
-
### File Naming Convention
|
| 573 |
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
```
|
| 578 |
|
| 579 |
-
|
| 580 |
-
- Campaign: `hard_scatter`
|
| 581 |
-
- Dataset: `ttbar`
|
| 582 |
-
- Version: `v1`
|
| 583 |
-
- Category: `reco` (or `truth`)
|
| 584 |
-
- Object: `tracks`
|
| 585 |
-
- Event range: `events0-9` (inclusive)
|
| 586 |
-
|
| 587 |
-
### Performance Tips
|
| 588 |
-
|
| 589 |
-
1. **Streaming**: Use `streaming=True` to avoid downloading the entire dataset
|
| 590 |
-
2. **Batch processing**: Process events in chunks for better memory efficiency
|
| 591 |
-
3. **Parallel loading**: Use `num_proc` parameter for multi-threaded data loading
|
| 592 |
-
4. **Selective loading**: Only load the data types you need (particles, hits, tracks)
|
| 593 |
-
|
| 594 |
-
### Related Datasets
|
| 595 |
-
|
| 596 |
-
- **ColliderML_ttbar_pu200** (coming soon): Same process with 200 pileup interactions
|
| 597 |
-
- **ColliderML_higgs_pu0** (coming soon): Higgs boson production without pileup
|
| 598 |
-
|
| 599 |
-
### Support
|
| 600 |
|
| 601 |
-
|
| 602 |
-
-
|
| 603 |
-
-
|
| 604 |
|
| 605 |
-
|
| 606 |
|
| 607 |
This work was supported by:
|
| 608 |
- ATLAS ITk ML Reconstruction project
|
|
|
|
| 16 |
configs:
|
| 17 |
- config_name: particles
|
| 18 |
data_files:
|
|
|
|
| 19 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events1000-1999.parquet"
|
|
|
|
|
|
|
| 20 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events10000-10999.parquet"
|
| 21 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events11000-11999.parquet"
|
| 22 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events15000-15999.parquet"
|
| 23 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet"
|
| 24 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events24000-24999.parquet"
|
| 25 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events25000-25999.parquet"
|
| 26 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events28000-28999.parquet"
|
|
|
|
| 41 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events78000-78999.parquet"
|
| 42 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events83000-83999.parquet"
|
| 43 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events88000-88999.parquet"
|
| 44 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events9000-9999.parquet"
|
| 45 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events92000-92999.parquet"
|
| 46 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events97000-97999.parquet"
|
| 47 |
- config_name: tracker_hits
|
| 48 |
data_files:
|
|
|
|
| 49 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events1000-1999.parquet"
|
|
|
|
|
|
|
| 50 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events10000-10999.parquet"
|
| 51 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events11000-11999.parquet"
|
| 52 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events15000-15999.parquet"
|
| 53 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events2000-2999.parquet"
|
| 54 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events24000-24999.parquet"
|
| 55 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events25000-25999.parquet"
|
| 56 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events28000-28999.parquet"
|
|
|
|
| 71 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events78000-78999.parquet"
|
| 72 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events83000-83999.parquet"
|
| 73 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events88000-88999.parquet"
|
| 74 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events9000-9999.parquet"
|
| 75 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events92000-92999.parquet"
|
| 76 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events97000-97999.parquet"
|
| 77 |
- config_name: calo_hits
|
| 78 |
data_files:
|
|
|
|
| 79 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events1000-1999.parquet"
|
|
|
|
|
|
|
| 80 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events10000-10999.parquet"
|
| 81 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events11000-11999.parquet"
|
| 82 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events15000-15999.parquet"
|
| 83 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events2000-2999.parquet"
|
| 84 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events24000-24999.parquet"
|
| 85 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events25000-25999.parquet"
|
| 86 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events28000-28999.parquet"
|
|
|
|
| 101 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events78000-78999.parquet"
|
| 102 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events83000-83999.parquet"
|
| 103 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events88000-88999.parquet"
|
| 104 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events9000-9999.parquet"
|
| 105 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events92000-92999.parquet"
|
| 106 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events97000-97999.parquet"
|
| 107 |
- config_name: tracks
|
| 108 |
data_files:
|
|
|
|
| 109 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events1000-1999.parquet"
|
|
|
|
|
|
|
| 110 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events10000-10999.parquet"
|
| 111 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events11000-11999.parquet"
|
| 112 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events15000-15999.parquet"
|
| 113 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events2000-2999.parquet"
|
| 114 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events24000-24999.parquet"
|
| 115 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events25000-25999.parquet"
|
| 116 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events28000-28999.parquet"
|
|
|
|
| 131 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events78000-78999.parquet"
|
| 132 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events83000-83999.parquet"
|
| 133 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events88000-88999.parquet"
|
| 134 |
+
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events9000-9999.parquet"
|
| 135 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events92000-92999.parquet"
|
| 136 |
- "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events97000-97999.parquet"
|
| 137 |
---
|
| 138 |
|
| 139 |
+
# ColliderML: ColliderML Top-Quark Pair Production (No Pileup)
|
| 140 |
|
| 141 |
## Dataset Description
|
| 142 |
|
| 143 |
+
This dataset contains simulated high-energy physics collision events generated using the **Open Data Detector (ODD)** geometry within the **ACTS (A Common Tracking Software)** framework.
|
| 144 |
|
| 145 |
### Dataset Summary
|
| 146 |
|
| 147 |
- **Campaign**: `hard_scatter`
|
| 148 |
+
- **Process**: Top-quark pair (ttbar) production
|
| 149 |
- **Version**: `v1`
|
| 150 |
+
- **Pileup**: 0
|
|
|
|
| 151 |
- **Detector**: Open Data Detector (ODD)
|
| 152 |
- **Format**: Apache Parquet with list columns for variable-length data
|
| 153 |
+
- **License**: cc-by-4.0
|
| 154 |
|
| 155 |
### Supported Tasks
|
| 156 |
|
|
|
|
| 158 |
|
| 159 |
- **Particle tracking**: Reconstruct charged particle trajectories from detector hits
|
| 160 |
- **Track-to-particle matching**: Associate reconstructed tracks with truth particles
|
| 161 |
+
- **Jet tagging**: Identify jets originating from different particle types
|
| 162 |
- **Energy reconstruction**: Predict particle energies from calorimeter deposits
|
| 163 |
+
- **Physics analysis**: Event classification and signal/background discrimination
|
| 164 |
- **Representation learning**: Study hierarchical information at different detector levels
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
## Dataset Structure
|
| 167 |
|
| 168 |
+
### Data Configurations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
The dataset contains 4 data types:
|
|
|
|
|
|
|
|
|
|
| 171 |
|
|
|
|
| 172 |
|
| 173 |
+
#### particles
|
| 174 |
|
| 175 |
+
- **Number of files**: 28
|
| 176 |
+
- **Fields**: event_id, particle_id, pdg_id, mass, energy, charge, vx, vy, vz, time, px, py, pz, vertex_primary, parent_id
|
| 177 |
|
| 178 |
+
#### tracker_hits
|
| 179 |
|
| 180 |
+
- **Number of files**: 28
|
| 181 |
+
- **Fields**: event_id, x, y, z, true_x, true_y, true_z, time, particle_id, cell_id, detector, volume_id, layer_id, surface_id
|
| 182 |
|
| 183 |
+
#### calo_hits
|
| 184 |
|
| 185 |
+
- **Number of files**: 28
|
| 186 |
+
- **Fields**: event_id, detector, total_energy, x, y, z, contrib_particle_ids, contrib_energies, contrib_times
|
| 187 |
|
| 188 |
+
#### tracks
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
- **Number of files**: 28
|
| 191 |
+
- **Fields**: event_id, d0, z0, phi, theta, qop, majority_particle_id, hit_ids, track_id
|
| 192 |
|
|
|
|
| 193 |
|
| 194 |
+
### Data Location
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
The Parquet files are hosted on NERSC public portal:
|
| 197 |
|
| 198 |
+
Base URL: `https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet`
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
## How to Use This Dataset
|
| 201 |
|
| 202 |
### Loading the Dataset
|
| 203 |
|
|
|
|
|
|
|
| 204 |
```python
|
| 205 |
from datasets import load_dataset
|
| 206 |
|
| 207 |
+
# Load a specific configuration
|
| 208 |
+
ds = load_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
"OpenDataDetector/ColliderML_ttbar_pu0",
|
| 210 |
+
"particles", # Choose: particles, tracker_hits, calo_hits, tracks
|
| 211 |
+
split="train"
|
|
|
|
| 212 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
# Iterate over events
|
| 215 |
+
for event in ds:
|
| 216 |
event_id = event['event_id']
|
| 217 |
+
print(f"Event {event_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
```
|
| 219 |
|
| 220 |
+
### Loading Multiple Configurations
|
| 221 |
|
| 222 |
```python
|
| 223 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
+
# Load all configurations
|
| 226 |
+
particles = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "particles", split="train")
|
| 227 |
+
tracker_hits = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "tracker_hits", split="train")
|
| 228 |
+
calo_hits = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "calo_hits", split="train")
|
| 229 |
+
tracks = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "tracks", split="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
```
|
| 231 |
|
| 232 |
+
## Citation
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
If you use this dataset in your research, please cite:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
+
```bibtex
|
| 237 |
+
@dataset{colliderml_ttbar_v1,
|
| 238 |
+
title={ColliderML: ColliderML Top-Quark Pair Production (No Pileup)},
|
| 239 |
+
author={ColliderML Collaboration},
|
| 240 |
+
year={2025},
|
| 241 |
+
publisher={NERSC},
|
| 242 |
+
howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML_ttbar_pu0}},
|
| 243 |
+
note={Simulation performed using ACTS and the Open Data Detector}
|
| 244 |
+
}
|
| 245 |
```
|
| 246 |
|
| 247 |
+
## Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
+
- **Primary contact**: [email protected]
|
| 250 |
+
- **Collaboration**: ATLAS ITk ML Reconstruction working group
|
| 251 |
+
- **Infrastructure**: NERSC (National Energy Research Scientific Computing Center)
|
| 252 |
|
| 253 |
+
## Acknowledgments
|
| 254 |
|
| 255 |
This work was supported by:
|
| 256 |
- ATLAS ITk ML Reconstruction project
|