murnanedaniel commited on
Commit
fb44329
·
verified ·
1 Parent(s): 6f7b78a

Update hard_scatter/ttbar/v1 dataset card

Browse files
Files changed (1) hide show
  1. README.md +62 -414
README.md CHANGED
@@ -16,13 +16,11 @@ size_categories:
16
  configs:
17
  - config_name: particles
18
  data_files:
19
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events0-9.parquet"
20
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events1000-1999.parquet"
21
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet"
22
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events9000-9999.parquet"
23
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events10000-10999.parquet"
24
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events11000-11999.parquet"
25
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events15000-15999.parquet"
 
26
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events24000-24999.parquet"
27
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events25000-25999.parquet"
28
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events28000-28999.parquet"
@@ -43,17 +41,16 @@ configs:
43
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events78000-78999.parquet"
44
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events83000-83999.parquet"
45
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events88000-88999.parquet"
 
46
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events92000-92999.parquet"
47
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events97000-97999.parquet"
48
  - config_name: tracker_hits
49
  data_files:
50
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events0-9.parquet"
51
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events1000-1999.parquet"
52
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events2000-2999.parquet"
53
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events9000-9999.parquet"
54
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events10000-10999.parquet"
55
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events11000-11999.parquet"
56
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events15000-15999.parquet"
 
57
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events24000-24999.parquet"
58
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events25000-25999.parquet"
59
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events28000-28999.parquet"
@@ -74,17 +71,16 @@ configs:
74
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events78000-78999.parquet"
75
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events83000-83999.parquet"
76
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events88000-88999.parquet"
 
77
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events92000-92999.parquet"
78
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events97000-97999.parquet"
79
  - config_name: calo_hits
80
  data_files:
81
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events0-9.parquet"
82
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events1000-1999.parquet"
83
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events2000-2999.parquet"
84
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events9000-9999.parquet"
85
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events10000-10999.parquet"
86
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events11000-11999.parquet"
87
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events15000-15999.parquet"
 
88
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events24000-24999.parquet"
89
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events25000-25999.parquet"
90
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events28000-28999.parquet"
@@ -105,17 +101,16 @@ configs:
105
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events78000-78999.parquet"
106
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events83000-83999.parquet"
107
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events88000-88999.parquet"
 
108
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events92000-92999.parquet"
109
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events97000-97999.parquet"
110
  - config_name: tracks
111
  data_files:
112
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events0-9.parquet"
113
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events1000-1999.parquet"
114
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events2000-2999.parquet"
115
- - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events9000-9999.parquet"
116
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events10000-10999.parquet"
117
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events11000-11999.parquet"
118
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events15000-15999.parquet"
 
119
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events24000-24999.parquet"
120
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events25000-25999.parquet"
121
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events28000-28999.parquet"
@@ -136,26 +131,26 @@ configs:
136
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events78000-78999.parquet"
137
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events83000-83999.parquet"
138
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events88000-88999.parquet"
 
139
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events92000-92999.parquet"
140
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events97000-97999.parquet"
141
  ---
142
 
143
- # ColliderML: Top-Quark Pair Production Dataset (ttbar, No Pileup)
144
 
145
  ## Dataset Description
146
 
147
- This dataset contains simulated high-energy physics collision events for top-quark pair (ttbar) production with **no pileup** (single interaction per event). The data is generated using the **Open Data Detector (ODD)** geometry within the **ACTS (A Common Tracking Software)** framework, representing a generic collider detector similar to those at the LHC.
148
 
149
  ### Dataset Summary
150
 
151
  - **Campaign**: `hard_scatter`
152
- - **Process**: Top-quark pair production (ttbar)
153
  - **Version**: `v1`
154
- - **Number of Events**: ~29,000 events (29 files × 1000 events per file)
155
- - **Pileup**: 0 (no additional interactions)
156
  - **Detector**: Open Data Detector (ODD)
157
  - **Format**: Apache Parquet with list columns for variable-length data
158
- - **License**: CC-BY-4.0
159
 
160
  ### Supported Tasks
161
 
@@ -163,446 +158,99 @@ This dataset is designed for machine learning tasks in high-energy physics, incl
163
 
164
  - **Particle tracking**: Reconstruct charged particle trajectories from detector hits
165
  - **Track-to-particle matching**: Associate reconstructed tracks with truth particles
166
- - **Jet tagging**: Identify jets originating from top quarks, b-quarks, or light quarks
167
  - **Energy reconstruction**: Predict particle energies from calorimeter deposits
168
- - **Physics analysis**: Event classification (signal vs. background discrimination)
169
  - **Representation learning**: Study hierarchical information at different detector levels
170
 
171
- ### Languages
172
-
173
- N/A (Physics data)
174
-
175
  ## Dataset Structure
176
 
177
- ### Data Instances
178
-
179
- Each row in the Parquet files represents a single collision event. Variable-length quantities (e.g., lists of particles, hits, tracks) are stored as Parquet list columns.
180
-
181
- Example event structure:
182
-
183
- ```python
184
- {
185
- 'event_id': 42,
186
- 'particle_id': [0, 1, 2, 3, ...], # List of particle IDs
187
- 'pdg_id': [11, -11, 211, ...], # Particle type codes
188
- 'px': [1.2, -0.5, 3.4, ...], # Momentum components (GeV)
189
- 'py': [0.8, 1.1, -0.3, ...],
190
- 'pz': [5.2, -2.1, 10.5, ...],
191
- 'energy': [5.5, 2.3, 11.2, ...],
192
- # ... additional fields
193
- }
194
- ```
195
-
196
- ### Data Fields
197
-
198
- The dataset contains four data types organized by detector hierarchy:
199
-
200
- #### 1. `particles` (Truth-level)
201
-
202
- Truth information about generated particles before detector simulation.
203
-
204
- | Field | Type | Description |
205
- |-------|------|-------------|
206
- | `event_id` | int64 | Unique event identifier |
207
- | `particle_id` | list\<int64\> | Unique particle ID within event |
208
- | `pdg_id` | list\<int64\> | PDG particle code (e.g., 11=electron, 13=muon, 211=pion) |
209
- | `mass` | list\<float64\> | Particle rest mass (GeV/c²) |
210
- | `energy` | list\<float64\> | Particle total energy (GeV) |
211
- | `charge` | list\<float64\> | Electric charge (in units of e) |
212
- | `px`, `py`, `pz` | list\<float64\> | Momentum components (GeV/c) |
213
- | `vx`, `vy`, `vz` | list\<float64\> | Vertex position (mm) |
214
- | `time` | list\<float64\> | Production time (ns) |
215
- | `num_tracker_hits` | list\<int64\> | Number of hits in tracker |
216
- | `num_calo_hits` | list\<int64\> | Number of hits in calorimeter |
217
- | `vertex_primary` | list\<int64\> | Primary vertex flag (1=primary, 0=secondary) |
218
- | `parent_id` | list\<float64\> | ID of parent particle |
219
-
220
- **Typical event**: ~200-300 particles per event
221
-
222
- #### 2. `tracker_hits` (Detector-level)
223
-
224
- Digitized spatial measurements from the tracking detector (silicon sensors).
225
-
226
- | Field | Type | Description |
227
- |-------|------|-------------|
228
- | `event_id` | int64 | Unique event identifier |
229
- | `x`, `y`, `z` | list\<float64\> | Measured hit position (mm) |
230
- | `true_x`, `true_y`, `true_z` | list\<float64\> | True (simulated) hit position before digitization (mm) |
231
- | `time` | list\<float64\> | Hit time (ns) |
232
- | `particle_id` | list\<int64\> | Truth particle that created this hit |
233
- | `volume_id` | list\<int64\> | Detector volume identifier |
234
- | `layer_id` | list\<int64\> | Detector layer number |
235
- | `surface_id` | list\<int64\> | Sensor surface identifier |
236
- | `cell_id` | list\<int64\> | Cell/pixel identifier |
237
- | `detector` | list\<int64\> | Detector subsystem code |
238
-
239
- **Typical event**: ~2,000-3,000 hits per event
240
-
241
- #### 3. `calo_hits` (Calorimeter-level)
242
-
243
- Energy deposits in the calorimeter system (electromagnetic + hadronic).
244
-
245
- | Field | Type | Description |
246
- |-------|------|-------------|
247
- | `event_id` | int64 | Unique event identifier |
248
- | `detector` | list\<string\> | Calorimeter subsystem name |
249
- | `cell_id` | list\<string\> | Calorimeter cell identifier |
250
- | `total_energy` | list\<float64\> | Total energy deposited in cell (GeV) |
251
- | `x`, `y`, `z` | list\<float64\> | Cell center position (mm) |
252
- | `contrib_particle_ids` | list\<list\<int64\>\> | IDs of particles contributing to this cell |
253
- | `contrib_energies` | list\<list\<float64\>\> | Energy contribution from each particle (GeV) |
254
- | `contrib_times` | list\<list\<float64\>\> | Time of each contribution (ns) |
255
-
256
- **Note**: Nested lists for contributions (one cell can have multiple particle deposits).
257
-
258
- **Typical event**: ~500-1,000 calorimeter cells with deposits
259
-
260
- #### 4. `tracks` (Reconstruction-level)
261
-
262
- Reconstructed particle tracks from pattern recognition and track fitting algorithms.
263
-
264
- | Field | Type | Description |
265
- |-------|------|-------------|
266
- | `event_id` | int64 | Unique event identifier |
267
- | `track_id` | list\<int64\> | Unique track identifier within event |
268
- | `majority_particle_id` | list\<int64\> | Truth particle with most hits on this track |
269
- | `d0` | list\<float64\> | Transverse impact parameter (mm) |
270
- | `z0` | list\<float64\> | Longitudinal impact parameter (mm) |
271
- | `phi` | list\<float64\> | Azimuthal angle (radians) |
272
- | `theta` | list\<float64\> | Polar angle (radians) |
273
- | `qop` | list\<float64\> | Charge divided by momentum (e/GeV) |
274
- | `hit_ids` | list\<list\<int32\>\> | List of tracker hit IDs assigned to this track |
275
-
276
- **Track parameters**: Standard ACTS track representation (perigee parameters at origin).
277
-
278
- **Derived quantities**:
279
- - Transverse momentum: `pt = abs(1/qop) * sin(theta)`
280
- - Pseudorapidity: `eta = -ln(tan(theta/2))`
281
- - Total momentum: `p = abs(1/qop)`
282
-
283
- **Typical event**: ~100-150 reconstructed tracks per event
284
-
285
- ### Data Splits
286
-
287
- Currently, the dataset does not have predefined train/validation/test splits. Users should implement their own splitting strategy based on their use case. Recommended approach:
288
-
289
- ```python
290
- from sklearn.model_selection import train_test_split
291
-
292
- # Example: 70% train, 15% validation, 15% test
293
- all_events = list(range(29000))
294
- train_val, test = train_test_split(all_events, test_size=0.15, random_state=42)
295
- train, val = train_test_split(train_val, test_size=0.176, random_state=42) # 0.176 * 0.85 ≈ 0.15
296
- ```
297
-
298
- ## Dataset Creation
299
-
300
- ### Curation Rationale
301
-
302
- This dataset was created to support machine learning research in high-energy physics, specifically for:
303
-
304
- 1. **Benchmarking tracking algorithms**: Compare traditional and ML-based track reconstruction methods
305
- 2. **Hierarchical representation learning**: Study information flow from detector hits → tracks → particles
306
- 3. **Physics analysis**: Develop ML models for event classification and particle identification
307
- 4. **Open science**: Provide publicly accessible, realistic detector simulation data
308
-
309
- The ttbar process is chosen because:
310
- - It produces complex final states with many particles
311
- - It's a key signature at hadron colliders (LHC)
312
- - Top quarks decay to b-quarks, W bosons, and ultimately jets and leptons
313
- - Relevant for searches for new physics beyond the Standard Model
314
-
315
- ### Source Data
316
-
317
- #### Initial Data Collection and Normalization
318
-
319
- The data is generated through the following simulation chain:
320
-
321
- 1. **Event Generation**: ttbar events generated using a Monte Carlo event generator
322
- 2. **Detector Simulation**: Particle propagation through the Open Data Detector using ACTS
323
- 3. **Digitization**: Conversion of energy deposits to realistic detector signals
324
- 4. **Reconstruction**: Track finding and fitting using ACTS tracking algorithms
325
- 5. **Format Conversion**: EDM4HEP → Parquet using the ColliderML data pipeline
326
-
327
- #### Who are the source data producers?
328
-
329
- The data is produced by the **ColliderML collaboration** as part of the **ATLAS ITk ML Reconstruction** project at NERSC (National Energy Research Scientific Computing Center).
330
-
331
- ### Annotations
332
-
333
- #### Annotation process
334
-
335
- The dataset includes truth-level annotations automatically generated during the simulation:
336
-
337
- - **Particle-level truth**: Generator-level particle information
338
- - **Hit-to-particle associations**: Which particle created each detector hit
339
- - **Track-to-particle matching**: `majority_particle_id` links reconstructed tracks to truth particles
340
 
341
- These annotations enable supervised learning for tasks like:
342
- - Track efficiency (did we reconstruct this particle?)
343
- - Track purity (how many hits belong to the correct particle?)
344
- - Fake rate (how many tracks are not matched to real particles?)
345
 
346
- #### Who are the annotators?
347
 
348
- N/A (Annotations are from simulation ground truth)
349
 
350
- ### Personal and Sensitive Information
 
351
 
352
- This dataset contains only simulated physics data. No personal or sensitive information is included.
353
 
354
- ## Considerations for Using the Data
 
355
 
356
- ### Social Impact of Dataset
357
 
358
- This dataset supports fundamental physics research and ML algorithm development. It has no direct social impact but contributes to:
 
359
 
360
- - Open science and reproducible research
361
- - Education in HEP and ML
362
- - Development of algorithms that may have broader applications (e.g., pattern recognition, tracking in medical imaging)
363
 
364
- ### Discussion of Biases
 
365
 
366
- As a simulated dataset, biases may arise from:
367
 
368
- 1. **Generator-level biases**: The event generator's modeling of ttbar production
369
- 2. **Detector simulation biases**: Approximations in material interactions, detector response
370
- 3. **Reconstruction biases**: Algorithm choices in track finding and fitting
371
- 4. **No pileup**: Real LHC data has 20-60 simultaneous collisions; this dataset has only 1
372
-
373
- Users should be aware that models trained on this data may not generalize to:
374
- - Real detector data (requires calibration and alignment)
375
- - Different detector geometries
376
- - Events with pileup
377
-
378
- ### Other Known Limitations
379
-
380
- - **Limited statistics**: ~29,000 events is moderate for ML training (consider data augmentation)
381
- - **Single physics process**: Only ttbar; does not include background processes
382
- - **Idealized detector**: ODD is a generic detector, not an exact replica of ATLAS/CMS
383
- - **No detector inefficiencies**: Assumes 100% hit efficiency (real detectors have dead regions)
384
-
385
- ## Additional Information
386
-
387
- ### Dataset Curators
388
-
389
- This dataset is maintained by the ColliderML team:
390
-
391
- - Primary contact: [[email protected]](mailto:[email protected])
392
- - Collaboration: ATLAS ITk ML Reconstruction working group
393
- - Infrastructure: NERSC (National Energy Research Scientific Computing Center)
394
-
395
- ### Licensing Information
396
-
397
- This dataset is released under the **Creative Commons Attribution 4.0 International (CC BY 4.0)** license.
398
-
399
- You are free to:
400
- - **Share**: Copy and redistribute the material
401
- - **Adapt**: Remix, transform, and build upon the material
402
-
403
- Under the following terms:
404
- - **Attribution**: You must give appropriate credit and indicate if changes were made
405
-
406
- ### Citation Information
407
-
408
- If you use this dataset in your research, please cite:
409
-
410
- ```bibtex
411
- @dataset{colliderml_ttbar_pu0_2024,
412
- title={ColliderML: Top-Quark Pair Production Dataset (No Pileup)},
413
- author={ColliderML Collaboration},
414
- year={2024},
415
- publisher={NERSC},
416
- howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML_ttbar_pu0}},
417
- note={Simulation performed using ACTS and the Open Data Detector}
418
- }
419
- ```
420
-
421
- ### Contributions
422
 
423
- This dataset was produced using:
424
 
425
- - **ACTS (A Common Tracking Software)**: https://acts.readthedocs.io/
426
- - **Open Data Detector**: https://acts.readthedocs.io/en/latest/examples/open_data_detector.html
427
- - **EDM4HEP**: https://edm4hep.web.cern.ch/
428
- - **ColliderML Pipeline**: https://github.com/ATLAS-ITk-ML/colliderml
429
 
430
  ## How to Use This Dataset
431
 
432
  ### Loading the Dataset
433
 
434
- The dataset is hosted on the NERSC public portal and can be streamed directly without downloading:
435
-
436
  ```python
437
  from datasets import load_dataset
438
 
439
- # Load particles (truth-level)
440
- particles_ds = load_dataset(
441
- "OpenDataDetector/ColliderML_ttbar_pu0",
442
- "particles",
443
- split="train",
444
- streaming=True
445
- )
446
-
447
- # Load tracker hits
448
- tracker_hits_ds = load_dataset(
449
- "OpenDataDetector/ColliderML_ttbar_pu0",
450
- "tracker_hits",
451
- split="train",
452
- streaming=True
453
- )
454
-
455
- # Load calorimeter hits
456
- calo_hits_ds = load_dataset(
457
- "OpenDataDetector/ColliderML_ttbar_pu0",
458
- "calo_hits",
459
- split="train",
460
- streaming=True
461
- )
462
-
463
- # Load reconstructed tracks
464
- tracks_ds = load_dataset(
465
  "OpenDataDetector/ColliderML_ttbar_pu0",
466
- "tracks",
467
- split="train",
468
- streaming=True
469
  )
470
- ```
471
-
472
- ### Example: Iterating Over Events
473
-
474
- ```python
475
- import numpy as np
476
 
477
- # Iterate over first 10 events
478
- for i, event in enumerate(particles_ds.take(10)):
479
  event_id = event['event_id']
480
- n_particles = len(event['particle_id'])
481
-
482
- print(f"Event {event_id}: {n_particles} particles")
483
-
484
- # Access list columns as numpy arrays
485
- px = np.array(event['px'])
486
- py = np.array(event['py'])
487
- pz = np.array(event['pz'])
488
-
489
- # Compute transverse momentum
490
- pt = np.sqrt(px**2 + py**2)
491
- print(f" Mean pt: {pt.mean():.2f} GeV")
492
  ```
493
 
494
- ### Example: Computing Track Features
495
 
496
  ```python
497
- import numpy as np
498
-
499
- for event in tracks_ds.take(5):
500
- # Get track parameters
501
- qop = np.array(event['qop'])
502
- theta = np.array(event['theta'])
503
- phi = np.array(event['phi'])
504
-
505
- # Compute derived quantities
506
- pt = np.abs(1.0 / qop) * np.sin(theta)
507
- eta = -np.log(np.tan(theta / 2.0))
508
-
509
- print(f"Event {event['event_id']}: {len(qop)} tracks")
510
- print(f" pt range: [{pt.min():.2f}, {pt.max():.2f}] GeV")
511
- print(f" eta range: [{eta.min():.2f}, {eta.max():.2f}]")
512
- ```
513
-
514
- ### Example: Matching Tracks to Particles
515
 
516
- ```python
517
- # Load both datasets
518
- particles = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "particles", split="train", streaming=True)
519
- tracks = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "tracks", split="train", streaming=True)
520
-
521
- # Process event-by-event
522
- for particle_event, track_event in zip(particles, tracks):
523
- assert particle_event['event_id'] == track_event['event_id']
524
-
525
- # Create particle ID lookup
526
- particle_ids = np.array(particle_event['particle_id'])
527
- particle_pt = np.sqrt(
528
- np.array(particle_event['px'])**2 +
529
- np.array(particle_event['py'])**2
530
- )
531
-
532
- # Get track associations
533
- track_particle_ids = np.array(track_event['majority_particle_id'])
534
-
535
- # Find matched particles
536
- for track_idx, pid in enumerate(track_particle_ids):
537
- if pid in particle_ids:
538
- particle_idx = np.where(particle_ids == pid)[0][0]
539
- truth_pt = particle_pt[particle_idx]
540
-
541
- # Compute reconstructed pt
542
- qop = track_event['qop'][track_idx]
543
- theta = track_event['theta'][track_idx]
544
- reco_pt = abs(1.0 / qop) * np.sin(theta)
545
-
546
- print(f"Track {track_idx}: truth pt = {truth_pt:.2f}, reco pt = {reco_pt:.2f} GeV")
547
  ```
548
 
549
- ### Data Location
550
-
551
- The Parquet files are hosted at:
552
 
553
- ```
554
- https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/
555
- ├── truth/
556
- │ └── particles/
557
- │ ├── hard_scatter.ttbar.v1.truth.particles.events0-9.parquet
558
- │ ├── hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet
559
- │ └── ... (29 files total, ~29,000 events)
560
- ├── reco/
561
- │ ├── tracker_hits/
562
- │ │ ├── hard_scatter.ttbar.v1.reco.tracker_hits.events0-9.parquet
563
- │ │ └── ... (29 files)
564
- │ ├── calo_hits/
565
- │ │ ├── hard_scatter.ttbar.v1.reco.calo_hits.events0-9.parquet
566
- │ │ └── ... (29 files)
567
- │ └── tracks/
568
- │ ├── hard_scatter.ttbar.v1.reco.tracks.events0-9.parquet
569
- │ └── ... (29 files)
570
- ```
571
-
572
- ### File Naming Convention
573
 
574
- Files follow the pattern:
575
- ```
576
- <campaign>.<dataset>.<version>.<category>.<object>.<event_range>.parquet
 
 
 
 
 
 
577
  ```
578
 
579
- Example: `hard_scatter.ttbar.v1.reco.tracks.events0-9.parquet`
580
- - Campaign: `hard_scatter`
581
- - Dataset: `ttbar`
582
- - Version: `v1`
583
- - Category: `reco` (or `truth`)
584
- - Object: `tracks`
585
- - Event range: `events0-9` (inclusive)
586
-
587
- ### Performance Tips
588
-
589
- 1. **Streaming**: Use `streaming=True` to avoid downloading the entire dataset
590
- 2. **Batch processing**: Process events in chunks for better memory efficiency
591
- 3. **Parallel loading**: Use `num_proc` parameter for multi-threaded data loading
592
- 4. **Selective loading**: Only load the data types you need (particles, hits, tracks)
593
-
594
- ### Related Datasets
595
-
596
- - **ColliderML_ttbar_pu200** (coming soon): Same process with 200 pileup interactions
597
- - **ColliderML_higgs_pu0** (coming soon): Higgs boson production without pileup
598
-
599
- ### Support
600
 
601
- For questions, issues, or feature requests:
602
- - Open an issue on GitHub: https://github.com/ATLAS-ITk-ML/colliderml/issues
603
- - Email: [email protected]
604
 
605
- ### Acknowledgments
606
 
607
  This work was supported by:
608
  - ATLAS ITk ML Reconstruction project
 
16
  configs:
17
  - config_name: particles
18
  data_files:
 
19
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events1000-1999.parquet"
 
 
20
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events10000-10999.parquet"
21
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events11000-11999.parquet"
22
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events15000-15999.parquet"
23
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events2000-2999.parquet"
24
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events24000-24999.parquet"
25
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events25000-25999.parquet"
26
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events28000-28999.parquet"
 
41
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events78000-78999.parquet"
42
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events83000-83999.parquet"
43
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events88000-88999.parquet"
44
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events9000-9999.parquet"
45
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events92000-92999.parquet"
46
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/truth/particles/hard_scatter.ttbar.v1.truth.particles.events97000-97999.parquet"
47
  - config_name: tracker_hits
48
  data_files:
 
49
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events1000-1999.parquet"
 
 
50
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events10000-10999.parquet"
51
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events11000-11999.parquet"
52
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events15000-15999.parquet"
53
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events2000-2999.parquet"
54
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events24000-24999.parquet"
55
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events25000-25999.parquet"
56
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events28000-28999.parquet"
 
71
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events78000-78999.parquet"
72
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events83000-83999.parquet"
73
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events88000-88999.parquet"
74
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events9000-9999.parquet"
75
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events92000-92999.parquet"
76
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracker_hits/hard_scatter.ttbar.v1.reco.tracker_hits.events97000-97999.parquet"
77
  - config_name: calo_hits
78
  data_files:
 
79
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events1000-1999.parquet"
 
 
80
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events10000-10999.parquet"
81
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events11000-11999.parquet"
82
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events15000-15999.parquet"
83
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events2000-2999.parquet"
84
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events24000-24999.parquet"
85
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events25000-25999.parquet"
86
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events28000-28999.parquet"
 
101
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events78000-78999.parquet"
102
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events83000-83999.parquet"
103
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events88000-88999.parquet"
104
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events9000-9999.parquet"
105
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events92000-92999.parquet"
106
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/calo_hits/hard_scatter.ttbar.v1.reco.calo_hits.events97000-97999.parquet"
107
  - config_name: tracks
108
  data_files:
 
109
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events1000-1999.parquet"
 
 
110
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events10000-10999.parquet"
111
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events11000-11999.parquet"
112
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events15000-15999.parquet"
113
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events2000-2999.parquet"
114
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events24000-24999.parquet"
115
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events25000-25999.parquet"
116
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events28000-28999.parquet"
 
131
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events78000-78999.parquet"
132
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events83000-83999.parquet"
133
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events88000-88999.parquet"
134
+ - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events9000-9999.parquet"
135
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events92000-92999.parquet"
136
  - "https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet/reco/tracks/hard_scatter.ttbar.v1.reco.tracks.events97000-97999.parquet"
137
  ---
138
 
139
+ # ColliderML: ColliderML Top-Quark Pair Production (No Pileup)
140
 
141
  ## Dataset Description
142
 
143
+ This dataset contains simulated high-energy physics collision events generated using the **Open Data Detector (ODD)** geometry within the **ACTS (A Common Tracking Software)** framework.
144
 
145
  ### Dataset Summary
146
 
147
  - **Campaign**: `hard_scatter`
148
+ - **Process**: Top-quark pair (ttbar) production
149
  - **Version**: `v1`
150
+ - **Pileup**: 0
 
151
  - **Detector**: Open Data Detector (ODD)
152
  - **Format**: Apache Parquet with list columns for variable-length data
153
+ - **License**: cc-by-4.0
154
 
155
  ### Supported Tasks
156
 
 
158
 
159
  - **Particle tracking**: Reconstruct charged particle trajectories from detector hits
160
  - **Track-to-particle matching**: Associate reconstructed tracks with truth particles
161
+ - **Jet tagging**: Identify jets originating from different particle types
162
  - **Energy reconstruction**: Predict particle energies from calorimeter deposits
163
+ - **Physics analysis**: Event classification and signal/background discrimination
164
  - **Representation learning**: Study hierarchical information at different detector levels
165
 
 
 
 
 
166
  ## Dataset Structure
167
 
168
+ ### Data Configurations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
170
+ The dataset contains 4 data types:
 
 
 
171
 
 
172
 
173
+ #### particles
174
 
175
+ - **Number of files**: 28
176
+ - **Fields**: event_id, particle_id, pdg_id, mass, energy, charge, vx, vy, vz, time, px, py, pz, vertex_primary, parent_id
177
 
178
+ #### tracker_hits
179
 
180
+ - **Number of files**: 28
181
+ - **Fields**: event_id, x, y, z, true_x, true_y, true_z, time, particle_id, cell_id, detector, volume_id, layer_id, surface_id
182
 
183
+ #### calo_hits
184
 
185
+ - **Number of files**: 28
186
+ - **Fields**: event_id, detector, total_energy, x, y, z, contrib_particle_ids, contrib_energies, contrib_times
187
 
188
+ #### tracks
 
 
189
 
190
+ - **Number of files**: 28
191
+ - **Fields**: event_id, d0, z0, phi, theta, qop, majority_particle_id, hit_ids, track_id
192
 
 
193
 
194
+ ### Data Location
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
+ The Parquet files are hosted on NERSC public portal:
197
 
198
+ Base URL: `https://portal.nersc.gov/cfs/m4958/ColliderML/hard_scatter/ttbar/v1/parquet`
 
 
 
199
 
200
  ## How to Use This Dataset
201
 
202
  ### Loading the Dataset
203
 
 
 
204
  ```python
205
  from datasets import load_dataset
206
 
207
+ # Load a specific configuration
208
+ ds = load_dataset(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  "OpenDataDetector/ColliderML_ttbar_pu0",
210
+ "particles", # Choose: particles, tracker_hits, calo_hits, tracks
211
+ split="train"
 
212
  )
 
 
 
 
 
 
213
 
214
+ # Iterate over events
215
+ for event in ds:
216
  event_id = event['event_id']
217
+ print(f"Event {event_id}")
 
 
 
 
 
 
 
 
 
 
 
218
  ```
219
 
220
+ ### Loading Multiple Configurations
221
 
222
  ```python
223
+ from datasets import load_dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
 
225
+ # Load all configurations
226
+ particles = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "particles", split="train")
227
+ tracker_hits = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "tracker_hits", split="train")
228
+ calo_hits = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "calo_hits", split="train")
229
+ tracks = load_dataset("OpenDataDetector/ColliderML_ttbar_pu0", "tracks", split="train")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
  ```
231
 
232
+ ## Citation
 
 
233
 
234
+ If you use this dataset in your research, please cite:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
 
236
+ ```bibtex
237
+ @dataset{colliderml_ttbar_v1,
238
+ title={ColliderML: ColliderML Top-Quark Pair Production (No Pileup)},
239
+ author={ColliderML Collaboration},
240
+ year={2025},
241
+ publisher={NERSC},
242
+ howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML_ttbar_pu0}},
243
+ note={Simulation performed using ACTS and the Open Data Detector}
244
+ }
245
  ```
246
 
247
+ ## Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
 
249
+ - **Primary contact**: [email protected]
250
+ - **Collaboration**: ATLAS ITk ML Reconstruction working group
251
+ - **Infrastructure**: NERSC (National Energy Research Scientific Computing Center)
252
 
253
+ ## Acknowledgments
254
 
255
  This work was supported by:
256
  - ATLAS ITk ML Reconstruction project