Datasets:
Tasks:
Text Classification
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Chinese
Size:
100K - 1M
License:
Update with comprehensive datacard and documentation
Browse files
README.md
CHANGED
|
@@ -1,99 +1,301 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- zh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
- sentiment-analysis
|
| 6 |
- chinese
|
| 7 |
- herbal-medicine
|
|
|
|
| 8 |
- reviews
|
| 9 |
- e-commerce
|
| 10 |
-
-
|
| 11 |
-
|
| 12 |
-
- text-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
---
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
##
|
| 29 |
|
| 30 |
-
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
-
-
|
| 34 |
|
| 35 |
-
###
|
| 36 |
-
-
|
| 37 |
-
-
|
| 38 |
-
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
| user_id | integer | Unique user identifier |
|
| 46 |
-
| review_text | string | The actual review content in Chinese |
|
| 47 |
-
| review_time | datetime | Timestamp when the review was posted |
|
| 48 |
-
| rating | integer | Numerical rating (1-5 scale) |
|
| 49 |
-
| product_id | string | Unique product identifier |
|
| 50 |
-
| sentiment_label | string | Sentiment classification (positive/neutral/negative) |
|
| 51 |
-
| source_file | string | Original data file name |
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
- Sentiment analysis research
|
| 57 |
-
- Chinese natural language processing
|
| 58 |
-
- E-commerce review analysis
|
| 59 |
-
- Traditional Chinese medicine market research
|
| 60 |
|
| 61 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
```python
|
| 64 |
from datasets import load_dataset
|
| 65 |
|
|
|
|
| 66 |
dataset = load_dataset("xingqiang/chinese-herbal-medicine-sentiment")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
```
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
|
|
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
##
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
If you use this dataset in your research, please cite:
|
| 80 |
|
| 81 |
-
```
|
| 82 |
-
@dataset{
|
| 83 |
title={Chinese Herbal Medicine Sentiment Analysis Dataset},
|
| 84 |
-
author={Xingqiang
|
| 85 |
year={2024},
|
| 86 |
version={1.0.0},
|
| 87 |
-
url={https://huggingface.co/datasets/xingqiang/chinese-herbal-medicine-sentiment}
|
|
|
|
| 88 |
}
|
| 89 |
```
|
| 90 |
|
| 91 |
-
## Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
| 94 |
|
| 95 |
---
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
- zh
|
| 4 |
+
license: mit
|
| 5 |
+
size_categories:
|
| 6 |
+
- 100K<n<1M
|
| 7 |
+
task_categories:
|
| 8 |
+
- text-classification
|
| 9 |
+
task_ids:
|
| 10 |
+
- sentiment-classification
|
| 11 |
+
paperswithcode_id: chinese-herbal-medicine-sentiment
|
| 12 |
tags:
|
| 13 |
- sentiment-analysis
|
| 14 |
- chinese
|
| 15 |
- herbal-medicine
|
| 16 |
+
- traditional-chinese-medicine
|
| 17 |
- reviews
|
| 18 |
- e-commerce
|
| 19 |
+
- healthcare
|
| 20 |
+
- nlp
|
| 21 |
+
- text-mining
|
| 22 |
+
pretty_name: Chinese Herbal Medicine Sentiment Analysis Dataset
|
| 23 |
+
dataset_info:
|
| 24 |
+
features:
|
| 25 |
+
- name: username
|
| 26 |
+
dtype: string
|
| 27 |
+
- name: user_id
|
| 28 |
+
dtype: int64
|
| 29 |
+
- name: review_text
|
| 30 |
+
dtype: string
|
| 31 |
+
- name: review_time
|
| 32 |
+
dtype: string
|
| 33 |
+
- name: rating
|
| 34 |
+
dtype: int64
|
| 35 |
+
- name: product_id
|
| 36 |
+
dtype: string
|
| 37 |
+
- name: sentiment_label
|
| 38 |
+
dtype: string
|
| 39 |
+
- name: source_file
|
| 40 |
+
dtype: string
|
| 41 |
+
splits:
|
| 42 |
+
- name: train
|
| 43 |
+
num_bytes: 24800000
|
| 44 |
+
num_examples: 211391
|
| 45 |
+
- name: validation
|
| 46 |
+
num_bytes: 2760000
|
| 47 |
+
num_examples: 23488
|
| 48 |
+
download_size: 27600000
|
| 49 |
+
dataset_size: 27560000
|
| 50 |
+
configs:
|
| 51 |
+
- config_name: default
|
| 52 |
+
data_files:
|
| 53 |
+
- split: train
|
| 54 |
+
path: data/train-*
|
| 55 |
+
- split: validation
|
| 56 |
+
path: data/validation-*
|
| 57 |
---
|
| 58 |
|
| 59 |
+
# 中药情感分析数据集 - 数据说明书
|
| 60 |
+
# Chinese Herbal Medicine Sentiment Analysis Dataset - Datacard
|
| 61 |
+
|
| 62 |
+
## 数据集概述 / Dataset Overview
|
| 63 |
+
|
| 64 |
+
### 基本信息 / Basic Information
|
| 65 |
+
- **数据集名称 / Dataset Name**: Chinese Herbal Medicine Sentiment Analysis Dataset
|
| 66 |
+
- **版本 / Version**: 1.0.0
|
| 67 |
+
- **创建日期 / Created**: 2025-08-26
|
| 68 |
+
- **作者 / Author**: Xingqiang Chen
|
| 69 |
+
- **许可证 / License**: MIT
|
| 70 |
+
- **语言 / Language**: 中文 (Chinese)
|
| 71 |
+
- **领域 / Domain**: 中药 / 传统中医药 (Traditional Chinese Medicine)
|
| 72 |
+
|
| 73 |
+
### 数据规模 / Data Scale
|
| 74 |
+
- **总样本数 / Total Samples**: 234,879
|
| 75 |
+
- **唯一产品数 / Unique Products**: 259
|
| 76 |
+
- **唯一用户数 / Unique Users**: 210,749
|
| 77 |
+
- **时间跨度 / Time Span**: 14.5 年 / years (2010-01-13 20:22:34 至 / to 2024-07-02 19:54:44)
|
| 78 |
+
|
| 79 |
+
## 数据内容 / Data Content
|
| 80 |
+
|
| 81 |
+
### 情感分布 / Sentiment Distribution
|
| 82 |
+
| 情感类别 / Sentiment | 数量 / Count | 百分比 / Percentage |
|
| 83 |
+
|-------------------|------------|------------------|
|
| 84 |
+
| 正面 / Positive | 178,014 | 75.8% |
|
| 85 |
+
| 中性 / Neutral | 27,023 | 11.5% |
|
| 86 |
+
| 负面 / Negative | 29,842 | 12.7% |
|
| 87 |
+
|
| 88 |
+
### 评分分布 / Rating Distribution
|
| 89 |
+
| 评分 / Rating | 数量 / Count | 百分比 / Percentage |
|
| 90 |
+
|--------------|------------|------------------|
|
| 91 |
+
| 1 星 / stars | 29,842 | 12.7% |
|
| 92 |
+
| 2 星 / stars | 7,554 | 3.2% |
|
| 93 |
+
| 3 星 / stars | 19,469 | 8.3% |
|
| 94 |
+
| 4 星 / stars | 1,953 | 0.8% |
|
| 95 |
+
| 5 星 / stars | 176,061 | 75.0% |
|
| 96 |
+
|
| 97 |
+
### 文本统计 / Text Statistics
|
| 98 |
+
- **平均长度 / Average Length**: 42.4 字符 / characters
|
| 99 |
+
- **中位数长度 / Median Length**: 27 字符 / characters
|
| 100 |
+
- **最短长度 / Minimum Length**: 1 字符 / characters
|
| 101 |
+
- **最长长度 / Maximum Length**: 563 字符 / characters
|
| 102 |
+
- **总字符数 / Total Characters**: 9,966,582
|
| 103 |
+
|
| 104 |
+
### 产品统计 / Product Statistics
|
| 105 |
+
- **每个产品的平均评论数 / Average Reviews per Product**: 906.9
|
| 106 |
+
- **每个产品的评论数中位数 / Median Reviews per Product**: 1018
|
| 107 |
+
- **单个产品最少评论数 / Minimum Reviews per Product**: 1
|
| 108 |
+
- **单个产品最多评论数 / Maximum Reviews per Product**: 3030
|
| 109 |
+
|
| 110 |
+
## 数据结构 / Data Structure
|
| 111 |
|
| 112 |
+
### 字段说明 / Field Descriptions
|
| 113 |
|
| 114 |
+
| 字段名 / Field Name | 类型 / Type | 描述 / Description | 示例 / Example |
|
| 115 |
+
|-------------------|------------|------------------|---------------|
|
| 116 |
+
| `username` | string | 匿名化的用户名 / Anonymized username | "用***客" |
|
| 117 |
+
| `user_id` | integer | 唯一用户标识符 / Unique user identifier | 16788761848 |
|
| 118 |
+
| `review_text` | string | 中文评论内容 / Chinese review content | "产品质量很好,效果明显" |
|
| 119 |
+
| `review_time` | datetime | 评论发布时间 / Review timestamp | "2021-12-09 12:56:37" |
|
| 120 |
+
| `rating` | integer | 评分 (1-5分) / Rating (1-5 scale) | 5 |
|
| 121 |
+
| `product_id` | string | 产品唯一标识符 / Product identifier | "100001642346" |
|
| 122 |
+
| `sentiment_label` | string | 情感标签 / Sentiment label | "positive", "neutral", "negative" |
|
| 123 |
+
| `source_file` | string | 原始数据文件名 / Source file name | "100001642346-好评.xls" |
|
| 124 |
|
| 125 |
+
### 数据格式 / Data Format
|
| 126 |
+
- **文件格式 / File Format**: CSV (UTF-8 encoding)
|
| 127 |
+
- **分隔符 / Delimiter**: 逗号 / Comma (`,`)
|
| 128 |
+
- **缺失值 / Missing Values**: 无 / None (所有字段都有值 / All fields have values)
|
| 129 |
|
| 130 |
+
## 数据收集 / Data Collection
|
| 131 |
|
| 132 |
+
### 来源 / Source
|
| 133 |
+
- **平台 / Platform**: 中国电商平台 / Chinese e-commerce platforms
|
| 134 |
+
- **收集时间 / Collection Period**: 2010-2024
|
| 135 |
+
- **收集方法 / Collection Method**: 网络爬虫 / Web scraping
|
| 136 |
|
| 137 |
+
### 数据质量 / Data Quality
|
| 138 |
+
- **完整性 / Completeness**: 100% (无缺失值 / No missing values)
|
| 139 |
+
- **一致性 / Consistency**: 高 / High (统一的数据格式和编码 / Unified format and encoding)
|
| 140 |
+
- **准确性 / Accuracy**: 高 / High (原始用户评论数据 / Original user review data)
|
| 141 |
|
| 142 |
+
### 数据预处理 / Data Preprocessing
|
| 143 |
+
1. **文本清理 / Text Cleaning**:
|
| 144 |
+
- 去除空白评论 / Remove empty reviews
|
| 145 |
+
- 统一编码格式 / Standardize encoding
|
| 146 |
+
- 过滤无效内容 / Filter invalid content
|
| 147 |
|
| 148 |
+
2. **情感标注 / Sentiment Labeling**:
|
| 149 |
+
- 基于平台原始分类 / Based on platform original classification
|
| 150 |
+
- 好评 → positive / 中评 → neutral / 差评 → negative
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
3. **数据验证 / Data Validation**:
|
| 153 |
+
- 检查数据类型 / Check data types
|
| 154 |
+
- 验证时间格式 / Validate time format
|
| 155 |
+
- 确保情感标签一致性 / Ensure sentiment label consistency
|
| 156 |
|
| 157 |
+
## 使用案例 / Use Cases
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
+
### 适用场景 / Suitable Applications
|
| 160 |
+
1. **情感分析研究 / Sentiment Analysis Research**
|
| 161 |
+
- 中文文本情感分类 / Chinese text sentiment classification
|
| 162 |
+
- 情感分析模型训练 / Sentiment analysis model training
|
| 163 |
+
- 跨领域情感分析 / Cross-domain sentiment analysis
|
| 164 |
|
| 165 |
+
2. **自然语言处理 / Natural Language Processing**
|
| 166 |
+
- 中文文本理解 / Chinese text understanding
|
| 167 |
+
- 文本分类任务 / Text classification tasks
|
| 168 |
+
- 语言模型微调 / Language model fine-tuning
|
| 169 |
+
|
| 170 |
+
3. **中医药研究 / Traditional Chinese Medicine Research**
|
| 171 |
+
- 用户满意度分析 / User satisfaction analysis
|
| 172 |
+
- 产品质量评估 / Product quality assessment
|
| 173 |
+
- 市场反馈分析 / Market feedback analysis
|
| 174 |
+
|
| 175 |
+
4. **商业智能 / Business Intelligence**
|
| 176 |
+
- 客户意见挖掘 / Customer opinion mining
|
| 177 |
+
- 产品改进建议 / Product improvement suggestions
|
| 178 |
+
- 竞争分析 / Competitive analysis
|
| 179 |
+
|
| 180 |
+
### 基准任务 / Benchmark Tasks
|
| 181 |
+
- **三分类情感分析 / 3-class Sentiment Classification**: positive, neutral, negative
|
| 182 |
+
- **五分类评分预测 / 5-class Rating Prediction**: 1-5 stars
|
| 183 |
+
- **文本-情感对齐 / Text-Sentiment Alignment**: 评论内容与情感标签的对应关系
|
| 184 |
+
|
| 185 |
+
## 技术规范 / Technical Specifications
|
| 186 |
+
|
| 187 |
+
### 系统要求 / System Requirements
|
| 188 |
+
```python
|
| 189 |
+
# Python 依赖 / Dependencies
|
| 190 |
+
pandas >= 1.3.0
|
| 191 |
+
datasets >= 2.0.0
|
| 192 |
+
transformers >= 4.20.0
|
| 193 |
+
torch >= 1.10.0 # 可选 / Optional
|
| 194 |
+
tensorflow >= 2.8.0 # 可选 / Optional
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
### 加载方式 / Loading Methods
|
| 198 |
+
|
| 199 |
+
#### 1. 使用 Hugging Face Datasets
|
| 200 |
```python
|
| 201 |
from datasets import load_dataset
|
| 202 |
|
| 203 |
+
# 加载完整数据集 / Load full dataset
|
| 204 |
dataset = load_dataset("xingqiang/chinese-herbal-medicine-sentiment")
|
| 205 |
+
|
| 206 |
+
# 访问训练集和验证集 / Access train and validation sets
|
| 207 |
+
train_data = dataset['train']
|
| 208 |
+
val_data = dataset['validation']
|
| 209 |
+
|
| 210 |
+
# 查看数据样例 / View data sample
|
| 211 |
+
print(train_data[0])
|
| 212 |
```
|
| 213 |
|
| 214 |
+
#### 2. 使用 Pandas
|
| 215 |
+
```python
|
| 216 |
+
import pandas as pd
|
| 217 |
|
| 218 |
+
# 从 CSV 文件加载 / Load from CSV
|
| 219 |
+
df = pd.read_csv("chinese_herbal_sentiment.csv")
|
| 220 |
|
| 221 |
+
# 查看基本信息 / View basic info
|
| 222 |
+
print(df.info())
|
| 223 |
+
print(df.head())
|
| 224 |
+
```
|
| 225 |
|
| 226 |
+
### 数据分割 / Data Splits
|
| 227 |
+
- **训练集 / Training Set**: 90% (211,391 样本 / samples)
|
| 228 |
+
- **验证集 / Validation Set**: 10% (23,487 样本 / samples)
|
| 229 |
+
- **分割方式 / Split Method**: 随机分割 / Random split (seed=42)
|
| 230 |
|
| 231 |
+
## 伦理考虑 / Ethical Considerations
|
| 232 |
|
| 233 |
+
### 隐私保护 / Privacy Protection
|
| 234 |
+
- **用户隐私 / User Privacy**: 所有��户名已匿名化处理 / All usernames are anonymized
|
| 235 |
+
- **个人信息 / Personal Information**: 不含任何个人身份信息 / No personal identifying information
|
| 236 |
+
- **数据脱敏 / Data Desensitization**: 保留分析价值同时保护用户隐私 / Preserve analytical value while protecting privacy
|
| 237 |
+
|
| 238 |
+
### 使用限制 / Usage Restrictions
|
| 239 |
+
- **学术研究 / Academic Research**: 鼓励用于学术研究和教育 / Encouraged for academic research and education
|
| 240 |
+
- **商业用途 / Commercial Use**: 遵循 MIT 许可证条款 / Follow MIT license terms
|
| 241 |
+
- **数据再分发 / Data Redistribution**: 允许在保持归属的情况下再分发 / Allowed with proper attribution
|
| 242 |
+
|
| 243 |
+
### 潜在偏见 / Potential Biases
|
| 244 |
+
- **时间偏见 / Temporal Bias**: 数据跨越多年,可能存在时间相关的偏见 / Data spans multiple years, potential temporal biases
|
| 245 |
+
- **平台偏见 / Platform Bias**: 来自特定电商平台,可能不代表整体市场 / From specific e-commerce platforms, may not represent overall market
|
| 246 |
+
- **产品偏见 / Product Bias**: 仅包含中药产品,情感表达可能具有领域特性 / Only includes herbal medicine products, sentiment expressions may be domain-specific
|
| 247 |
+
|
| 248 |
+
## 质量保证 / Quality Assurance
|
| 249 |
+
|
| 250 |
+
### 数据验证 / Data Validation
|
| 251 |
+
- ✅ 无重复记录 / No duplicate records
|
| 252 |
+
- ✅ 无缺失值 / No missing values
|
| 253 |
+
- ✅ 时间格式一致 / Consistent time format
|
| 254 |
+
- ✅ 情感标签有效 / Valid sentiment labels
|
| 255 |
+
- ✅ 文本编码正确 / Correct text encoding
|
| 256 |
+
|
| 257 |
+
### 统计检查 / Statistical Checks
|
| 258 |
+
- ✅ 情感分布合理 / Reasonable sentiment distribution
|
| 259 |
+
- ✅ 评分与情感标签对应 / Rating-sentiment correspondence
|
| 260 |
+
- ✅ 时间分布连续 / Continuous temporal distribution
|
| 261 |
+
- ✅ 产品覆盖充分 / Sufficient product coverage
|
| 262 |
+
|
| 263 |
+
## 版本历史 / Version History
|
| 264 |
+
|
| 265 |
+
### v1.0.0 (2024-08-26)
|
| 266 |
+
- 初始发布 / Initial release
|
| 267 |
+
- 包含 234,879 条评论数据 / Contains 234,879 reviews
|
| 268 |
+
- 支持三分类情感分析任务 / Supports 3-class sentiment analysis task
|
| 269 |
+
|
| 270 |
+
## 引用方式 / Citation
|
| 271 |
+
|
| 272 |
+
如果您在研究中使用了此数据集,请引用:
|
| 273 |
If you use this dataset in your research, please cite:
|
| 274 |
|
| 275 |
+
```bibtex
|
| 276 |
+
@dataset{chinese_herbal_sentiment_2024,
|
| 277 |
title={Chinese Herbal Medicine Sentiment Analysis Dataset},
|
| 278 |
+
author={Chen, Xingqiang},
|
| 279 |
year={2024},
|
| 280 |
version={1.0.0},
|
| 281 |
+
url={https://huggingface.co/datasets/xingqiang/chinese-herbal-medicine-sentiment},
|
| 282 |
+
note={A comprehensive sentiment analysis dataset for Traditional Chinese Medicine product reviews}
|
| 283 |
}
|
| 284 |
```
|
| 285 |
|
| 286 |
+
## 联系方式 / Contact
|
| 287 |
+
|
| 288 |
+
- **数据集维护者 / Dataset Maintainer**: Xingqiang Chen
|
| 289 |
+
- **Hugging Face**: [xingqiang](https://huggingface.co/xingqiang)
|
| 290 |
+
- **问题反馈 / Issue Reports**: 请在 Hugging Face 数据集页面提交 / Please submit on the Hugging Face dataset page
|
| 291 |
+
|
| 292 |
+
## 致谢 / Acknowledgments
|
| 293 |
|
| 294 |
+
感谢所有提供评论数据的用户,以及中医药电商平台提供的数据基础。
|
| 295 |
+
Thanks to all users who provided review data and the e-commerce platforms for the data foundation.
|
| 296 |
|
| 297 |
---
|
| 298 |
|
| 299 |
+
**最后更新 / Last Updated**: 2025-08-26 02:50:03
|
| 300 |
+
**数据集大小 / Dataset Size**: ~9.5 MB (文本内容 / text content)
|
| 301 |
|