| import pickle | |
| from pathlib import Path | |
| from typing import List | |
| import datasets | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Licenses, Tasks | |
| _CITATION = """\ | |
| @misc{andreaschandra2020, | |
| author = {Chandra, Andreas}, | |
| title = {Indonesian News Dataset}, | |
| year = {2020}, | |
| howpublished = {Online}, | |
| url = {https://github.com/andreaschandra/indonesian-news}, | |
| note = {Accessed: 2024-02-13}, | |
| } | |
| """ | |
| _LANGUAGES = ["ind"] | |
| _DATASETNAME = "indonesian_news_dataset" | |
| _DESCRIPTION = """An imbalanced dataset to classify Indonesian News articles. | |
| The dataset contains 5 class labels: bola, news, bisnis, tekno, and otomotif. | |
| The dataset comprises of around 6k train and 2.5k test examples, with the more prevalent classes | |
| (bola and news) having roughly 10x the number of train and test examples than the least prevalent class (otomotif). | |
| """ | |
| _HOMEPAGE = "https://github.com/andreaschandra/indonesian-news" | |
| _LICENSE = Licenses.UNKNOWN.value | |
| _URLS = { | |
| f"{_DATASETNAME}_train": "https://drive.usercontent.google.com/u/0/uc?id=1wCwPMKSyTciv8I3g9xGdUfEraA1SydG6&export=download", | |
| f"{_DATASETNAME}_test": "https://drive.usercontent.google.com/u/0/uc?id=1AFW_5KQFW86jlFO16S9bt564Y86WoJjV&export=download", | |
| } | |
| _SUPPORTED_TASKS = [Tasks.TOPIC_MODELING] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| _TAGS = ["bola", "news", "bisnis", "tekno", "otomotif"] | |
| _LOCAL = False | |
| class IndonesianNewsDataset(datasets.GeneratorBasedBuilder): | |
| """The dataset contains 5 Indonesian News articles with imbalanced classes""" | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| SEACROWD_SCHEMA_NAME = "text" | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_source", | |
| version=SOURCE_VERSION, | |
| description=f"{_DATASETNAME} source schema", | |
| schema="source", | |
| subset_id=_DATASETNAME, | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| version=SEACROWD_VERSION, | |
| description=f"{_DATASETNAME} SEACrowd schema", | |
| schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", | |
| subset_id=f"{_DATASETNAME}", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | |
| def _info(self) -> datasets.DatasetInfo: | |
| if self.config.schema == "source": | |
| features = datasets.Features({"index": datasets.Value("string"), "news": datasets.Value("string"), "label": datasets.Value("string")}) | |
| elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | |
| features = schemas.text_features(_TAGS) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| """Returns SplitGenerators.""" | |
| train_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_train"])) | |
| test_dir = Path(dl_manager.download(_URLS[f"{_DATASETNAME}_test"])) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": train_dir, | |
| "split": "train", | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": test_dir, | |
| "split": "test", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path, split: str): | |
| """Yields examples as (key, example) tuples.""" | |
| with open(filepath, "rb") as file: | |
| news_file = pickle.load(file) | |
| news_list = news_file[0] | |
| label_list = news_file[1] | |
| if self.config.schema == "source": | |
| for idx, (news, label) in enumerate(zip(news_list, label_list)): | |
| example = {"index": str(idx), "news": news, "label": label} | |
| yield idx, example | |
| elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": | |
| for idx, (news, label) in enumerate(zip(news_list, label_list)): | |
| example = {"id": str(idx), "text": news, "label": label} | |
| yield idx, example | |
| else: | |
| raise ValueError(f"Invalid config: {self.config.name}") | |