| from pathlib import Path | |
| from typing import List | |
| import datasets | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.common_parser import load_conll_data | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, | |
| DEFAULT_SOURCE_VIEW_NAME, Tasks) | |
| _DATASETNAME = "term_a" | |
| _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME | |
| _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME | |
| _LANGUAGES = ["ind"] | |
| _LOCAL = False | |
| _CITATION = """\ | |
| @article{winatmoko2019aspect, | |
| title={Aspect and opinion term extraction for hotel reviews using transfer learning and auxiliary labels}, | |
| author={Winatmoko, Yosef Ardhito and Septiandri, Ali Akbar and Sutiono, Arie Pratama}, | |
| journal={arXiv preprint arXiv:1909.11879}, | |
| year={2019} | |
| } | |
| @inproceedings{fernando2019aspect, | |
| title={Aspect and opinion terms extraction using double embeddings and attention mechanism for indonesian hotel reviews}, | |
| author={Fernando, Jordhy and Khodra, Masayu Leylia and Septiandri, Ali Akbar}, | |
| booktitle={2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)}, | |
| pages={1--6}, | |
| year={2019}, | |
| organization={IEEE} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| TermA is a span-extraction dataset collected from the hotel aggregator platform, AiryRooms | |
| (Septiandri and Sutiono, 2019; Fernando et al., | |
| 2019) consisting of thousands of hotel reviews,each containing a span label for aspect | |
| and sentiment words representing the opinion of the reviewer on the corresponding aspect. | |
| The labels use Inside-Outside-Beginning tagging (IOB) with two kinds of tags, aspect and | |
| sentiment. | |
| """ | |
| _HOMEPAGE = "https://github.com/IndoNLP/indonlu" | |
| _LICENSE = "Creative Common Attribution Share-Alike 4.0 International" | |
| _URLs = { | |
| "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/train_preprocess.txt", | |
| "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/valid_preprocess.txt", | |
| "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/terma_term-extraction-airy/test_preprocess_masked_label.txt", | |
| } | |
| _SUPPORTED_TASKS = [Tasks.KEYWORD_TAGGING] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class BaPOSDataset(datasets.GeneratorBasedBuilder): | |
| """TermA is a span-extraction dataset containing 3k, 1k, 1k colloquial sentences in train, valid & test respectively of hotel domain with a total of 5 tags.""" | |
| label_classes = ["B-ASPECT", "I-ASPECT", "B-SENTIMENT", "I-SENTIMENT", "O"] | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name="term_a_source", | |
| version=datasets.Version(_SOURCE_VERSION), | |
| description="TermA source schema", | |
| schema="source", | |
| subset_id="term_a", | |
| ), | |
| SEACrowdConfig( | |
| name="term_a_seacrowd_seq_label", | |
| version=datasets.Version(_SEACROWD_VERSION), | |
| description="TermA Nusantara schema", | |
| schema="seacrowd_seq_label", | |
| subset_id="term_a", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = "term_a_source" | |
| def _info(self): | |
| if self.config.schema == "source": | |
| features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "token_tag": [datasets.Value("string")]}) | |
| elif self.config.schema == "seacrowd_seq_label": | |
| features = schemas.seq_label_features(self.label_classes) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) | |
| validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"])) | |
| test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"])) | |
| data_files = { | |
| "train": train_tsv_path, | |
| "validation": validation_tsv_path, | |
| "test": test_tsv_path, | |
| } | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": data_files["train"]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": data_files["validation"]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": data_files["test"]}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path): | |
| conll_dataset = load_conll_data(filepath) | |
| if self.config.schema == "source": | |
| for i, row in enumerate(conll_dataset): | |
| ex = {"index": str(i), "tokens": row["sentence"], "token_tag": row["label"]} | |
| yield i, ex | |
| elif self.config.schema == "seacrowd_seq_label": | |
| for i, row in enumerate(conll_dataset): | |
| ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]} | |
| yield i, ex | |
| else: | |
| raise ValueError(f"Invalid config: {self.config.name}") | |