Upload tlunified_ner.py with huggingface_hub
Browse files- tlunified_ner.py +149 -0
tlunified_ner.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from typing import Dict, List, Tuple
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
from datasets.download.download_manager import DownloadManager
|
| 6 |
+
|
| 7 |
+
from seacrowd.utils import schemas
|
| 8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 10 |
+
|
| 11 |
+
_CITATION = """
|
| 12 |
+
@inproceedings{miranda-2023-developing,
|
| 13 |
+
title = {Developing a Named Entity Recognition Dataset for Tagalog},
|
| 14 |
+
author = "Miranda, Lester James Validad",
|
| 15 |
+
booktitle = "Proceedings of the First Workshop for Southeast Asian Language Processing (SEALP),"
|
| 16 |
+
month = nov,
|
| 17 |
+
year = 2023,
|
| 18 |
+
address = "Online",
|
| 19 |
+
publisher = "Association for Computational Linguistics",
|
| 20 |
+
}
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
_LOCAL = False
|
| 24 |
+
_LANGUAGES = ["tgl"]
|
| 25 |
+
_DATASETNAME = "tlunified_ner"
|
| 26 |
+
_DESCRIPTION = """\
|
| 27 |
+
This dataset contains the annotated TLUnified corpora from Cruz and Cheng
|
| 28 |
+
(2021). It is a curated sample of around 7,000 documents for the named entity
|
| 29 |
+
recognition (NER) task. The majority of the corpus are news reports in Tagalog,
|
| 30 |
+
resembling the domain of the original ConLL 2003. There are three entity types:
|
| 31 |
+
Person (PER), Organization (ORG), and Location (LOC).
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
_HOMEPAGE = "https://huggingface.co/ljvmiranda921/tlunified-ner"
|
| 35 |
+
_LICENSE = Licenses.GPL_3_0.value
|
| 36 |
+
_URLS = {
|
| 37 |
+
"train": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/train.iob",
|
| 38 |
+
"dev": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/dev.iob",
|
| 39 |
+
"test": "https://huggingface.co/datasets/ljvmiranda921/tlunified-ner/resolve/main/corpus/iob/test.iob",
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
| 43 |
+
_SOURCE_VERSION = "1.0.0"
|
| 44 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class TLUnifiedNERDataset(datasets.GeneratorBasedBuilder):
|
| 48 |
+
"""Tagalog Named Entity Recognition dataset from https://huggingface.co/ljvmiranda921/tlunified-ner"""
|
| 49 |
+
|
| 50 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 51 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 52 |
+
|
| 53 |
+
SEACROWD_SCHEMA_NAME = "seq_label"
|
| 54 |
+
LABEL_CLASSES = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
|
| 55 |
+
|
| 56 |
+
BUILDER_CONFIGS = [
|
| 57 |
+
SEACrowdConfig(
|
| 58 |
+
name=f"{_DATASETNAME}_source",
|
| 59 |
+
version=SOURCE_VERSION,
|
| 60 |
+
description=f"{_DATASETNAME} source schema",
|
| 61 |
+
schema="source",
|
| 62 |
+
subset_id=_DATASETNAME,
|
| 63 |
+
),
|
| 64 |
+
SEACrowdConfig(
|
| 65 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 66 |
+
version=SEACROWD_VERSION,
|
| 67 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 68 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
| 69 |
+
subset_id=_DATASETNAME,
|
| 70 |
+
),
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 74 |
+
|
| 75 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 76 |
+
if self.config.schema == "source":
|
| 77 |
+
features = datasets.Features(
|
| 78 |
+
{
|
| 79 |
+
"id": datasets.Value("string"),
|
| 80 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 81 |
+
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self.LABEL_CLASSES)),
|
| 82 |
+
}
|
| 83 |
+
)
|
| 84 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
| 85 |
+
features = schemas.seq_label_features(self.LABEL_CLASSES)
|
| 86 |
+
|
| 87 |
+
return datasets.DatasetInfo(
|
| 88 |
+
description=_DESCRIPTION,
|
| 89 |
+
features=features,
|
| 90 |
+
homepage=_HOMEPAGE,
|
| 91 |
+
license=_LICENSE,
|
| 92 |
+
citation=_CITATION,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
| 96 |
+
"""Returns SplitGenerators."""
|
| 97 |
+
data_files = {
|
| 98 |
+
"train": Path(dl_manager.download_and_extract(_URLS["train"])),
|
| 99 |
+
"dev": Path(dl_manager.download_and_extract(_URLS["dev"])),
|
| 100 |
+
"test": Path(dl_manager.download_and_extract(_URLS["test"])),
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
return [
|
| 104 |
+
datasets.SplitGenerator(
|
| 105 |
+
name=datasets.Split.TRAIN,
|
| 106 |
+
gen_kwargs={"filepath": data_files["train"], "split": "train"},
|
| 107 |
+
),
|
| 108 |
+
datasets.SplitGenerator(
|
| 109 |
+
name=datasets.Split.VALIDATION,
|
| 110 |
+
gen_kwargs={"filepath": data_files["dev"], "split": "dev"},
|
| 111 |
+
),
|
| 112 |
+
datasets.SplitGenerator(
|
| 113 |
+
name=datasets.Split.TEST,
|
| 114 |
+
gen_kwargs={"filepath": data_files["test"], "split": "test"},
|
| 115 |
+
),
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
| 119 |
+
"""Yield examples as (key, example) tuples"""
|
| 120 |
+
# The only difference between the source schema and the seacrowd seq_label schema is the dictionary keys.
|
| 121 |
+
# The implementation is the same.
|
| 122 |
+
label_key = "ner_tags" if self.config.schema == "source" else "labels"
|
| 123 |
+
with open(filepath, encoding="utf-8") as f:
|
| 124 |
+
guid = 0
|
| 125 |
+
tokens = []
|
| 126 |
+
ner_tags = []
|
| 127 |
+
for line in f:
|
| 128 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
| 129 |
+
if tokens:
|
| 130 |
+
yield guid, {
|
| 131 |
+
"id": str(guid),
|
| 132 |
+
"tokens": tokens,
|
| 133 |
+
label_key: ner_tags,
|
| 134 |
+
}
|
| 135 |
+
guid += 1
|
| 136 |
+
tokens = []
|
| 137 |
+
ner_tags = []
|
| 138 |
+
else:
|
| 139 |
+
# TLUnified-NER iob are separated by \t
|
| 140 |
+
token, ner_tag = line.split("\t")
|
| 141 |
+
tokens.append(token)
|
| 142 |
+
ner_tags.append(ner_tag.rstrip())
|
| 143 |
+
# Last example
|
| 144 |
+
if tokens:
|
| 145 |
+
yield guid, {
|
| 146 |
+
"id": str(guid),
|
| 147 |
+
"tokens": tokens,
|
| 148 |
+
label_key: ner_tags,
|
| 149 |
+
}
|