import csv import json import sympy as sp import re import random import itertools # Load CSV file containing seed questions and maximal symbolic perturbations. csv_file_path = 'Seed_and_Max_Symbolic_Perturbations.csv' with open(csv_file_path, 'r', encoding='utf-8') as cf: data = list(csv.DictReader(cf)) # Read CSV into list of dicts cur_data_len = len(data) print("Length of initial data: ", cur_data_len) # Print initial dataset size # Define symbolic variables that appear in the symbolic perturbations - and will be replaced by various expressions during variant generation. x, A, B, F, G, H, N = sp.symbols('x A B F G H N', real=True) Q = sp.symbols('Q', real=True, positive=True) # Define symbolic perturbation characters and their corresponding sympy symbols symnoise_char_list = ['A', 'B', 'F', 'G', 'H'] symnoise_sym_list = [A, B, F, G, H] local_sym_dict = {'x': x, 'A': A, 'B': B, 'F': F, 'G': G, 'H': H, 'N': N, 'Q': Q} # These sources contain explicit hypergeometric functions, which are marked by 'F' - so 'F' is not treated as a symbolic perturbation character. # The hg_ variables below represent this special treatment. hypergeomatric_question_sources = ["ASyMOB\nHypergeometrics\nQ1", "ASyMOB\nHypergeometrics\nQ2", "ASyMOB\nHypergeometrics\nQ3", "ASyMOB\nHypergeometrics\nQ4"] hg_symnoise_char_list = ['A', 'B', 'G', 'H'] hg_symnoise_sym_list = [A, B, G, H] hg_local_sym_dict = {'x': x, 'A': A, 'B': B, 'G': G, 'H': H, 'N': N, 'Q': Q} # List of easy equivalent forms (should simplify to 1) equivalent_forms_easy = [ sp.sin(-Q*x)**2 + sp.cos(Q*x)**2, -sp.sinh(Q*x)**2 + sp.cosh(Q*x)**2, (sp.log(x) * sp.log(Q,x))/sp.log(Q), Q * sp.Sum( x / (Q * 2**N) , (N, 1, sp.oo)) / x, (sp.exp(sp.I * Q * x) - sp.exp(-sp.I * Q * x)) / (2 * sp.I * sp.sin(Q * x)) ] # List of hard equivalent forms (should simplify to 1) equivalent_forms_hard = [ (sp.tan((Q-1)*x) + sp.tan(x)) / ((1 - sp.tan((Q-1)*x) * sp.tan(x)) * sp.tan(Q*x)), sp.sinh(sp.log(Q*x + sp.sqrt((Q*x)**2 + 1))) / (Q*x), (sp.log(x / sp.E, Q) + sp.log(sp.E, Q))/ sp.log(x, Q), Q * sp.Sum( (6 * x) / (Q * (N * sp.pi)**2) , (N, 1, sp.oo)) / x, -((1 + sp.exp(4 * sp.I * Q * x)) / (1 - sp.exp(4 * sp.I * Q * x))) * (2 * sp.tan(Q*x) / ((1 - sp.tan(Q*x)**2)) * sp.I) ] # Test that all equivalent forms simplify to 1 and are numerically close to 1. # Note that some expressions above do not simplify to 1 by sp.simplify - due to the CAS's limitations - but are evaluated correctly to 1 numerically. # We still print the warning to raise user awareness. equivalence_test_x = -2.5 equivalence_test_Q = 0.5 equivalence_test_margin = 1e-4 for form in (equivalent_forms_easy + equivalent_forms_hard): # Check if the form is equivalent to 1 if sp.simplify(form) != 1 or (abs(form.subs(Q, equivalence_test_Q).subs(x, equivalence_test_x).evalf() - 1) > equivalence_test_margin): print(f"Form {form} is not equivalent to 1") print(f"{form} is simplified to {sp.simplify(form)}") print("Form is numerically evaluated to: ", form.subs(Q, equivalence_test_Q).subs(x, equivalence_test_x).evalf()) # LaTeX representations of the easy and hard equivalent forms eq_forms_latex_easy = [ r'\sin^{2}{\left(- Q x \right)} + \cos^{2}{\left(Q x \right)}', r'- \sinh^{2}{\left(Q x \right)} + \cosh^{2}{\left(Q x \right)}', r'\frac{\ln(x) \cdot \log_{x}(Q)}{\ln(Q)}', r'\frac{Q \sum_{N=1}^{\infty} \frac{2^{- N} x}{Q}}{x}', r'- \frac{i \left(e^{i Q x} - e^{- i Q x}\right)}{2 \sin{\left(Q x \right)}}'] eq_forms_latex_hard = [ r'\frac{\tan{\left(x \right)} + \tan{\left(x \left(Q - 1\right) \right)}}{\left(- \tan{\left(x \right)} \tan{\left(x \left(Q - 1\right) \right)} + 1\right) \tan{\left(Q x \right)}}', r'\frac{\sinh{\left(\log{\left(Q x + \sqrt{Q^{2} x^{2} + 1} \right)} \right)}}{Q x}', r'\frac{\log_Q\left(\frac{x}{e}\right) + \log_Q(e)}{\log_Q(x)}', r'\frac{Q \sum_{N=1}^{\infty} \frac{6 x}{\pi^{2} N^{2} Q}}{x}', r'- \frac{2 i \left(e^{4 i Q x} + 1\right) \tan{\left(Q x \right)}}{\left(1 - e^{4 i Q x}\right) \left(1 - \tan^{2}{\left(Q x \right)}\right)}'] def replace_in_dollars(s, old, new): # Replace 'old' with 'new' inside all $...$ math substrings in s def repl(match): return match.group(0).replace(old, new) return re.sub(r'\$(.*?)\$', repl, s) def char_in_dollars(s, char): """Return True if char appears inside any $...$ substring in s.""" matches = re.findall(r'\$(.*?)\$', s) return any(char in match for match in matches) def check_for_problematic_symbols(sp_ans): """Check for problematic symbols in sp_ans, but allow infinities if they are only used as summation or integration limits.""" # Check for NaN or zoo anywhere if sp_ans.has(sp.nan) or sp_ans.has(sp.zoo): return True # Check for oo or -oo not as summation/integration limits def has_bad_infinity(expr): # If it's a Sum or Integral, skip limits if isinstance(expr, (sp.Sum, sp.Integral)): # expr.limits is a tuple of tuples: (symbol, lower, upper) # Only check the function part, not the limits return has_bad_infinity(expr.function) # If it's an infinity itself, it's problematic if expr == sp.oo or expr == -sp.oo: return True # Recursively check args return any(has_bad_infinity(arg) for arg in getattr(expr, 'args', [])) return has_bad_infinity(sp_ans) # Generate symbolic and numeric variants for each item in the dataset def generate_variants(items, symnoise_chars, symnoise_syms, sym_dict, cur_ind): next_ind = cur_ind new_items = [] for item in items: latex_chall = item.get("Challenge") sp_sym_ans = sp.sympify(item.get("Answer in Sympy"), locals = sym_dict) source = item.get("Source") chars_in_latex = [] syms_in_latex = [] # Find which symbolic perturbation characters are present in the LaTeX challenge for i in range(len(symnoise_chars)): if char_in_dollars(latex_chall, symnoise_chars[i]): chars_in_latex.append(symnoise_chars[i]) syms_in_latex.append(symnoise_syms[i]) if len(chars_in_latex) == 0: print("No symbolic parameters found inside math expressions in source: ",source) item['Variation'] = f"Symbolic-{len(chars_in_latex)}" # Replace all symbols in symnoise_sym_list by 1 for equivalence perturbation answers. sp_sym_ans_ones = sp_sym_ans.subs(dict(zip(symnoise_syms, [1]*len(symnoise_syms)))) # Check for problematic symbols in sp_sym_ans_ones if check_for_problematic_symbols(sp_sym_ans_ones): print(f"Warning: sp_sym_ans_ones for {item} contains problematic symbol(s): {sp_sym_ans_ones}") # Generate all permutations of easy/hard equivalent forms for all symbolic chars ordered_sets = list(itertools.permutations(range(len(eq_forms_latex_easy)), len(chars_in_latex))) for order in ordered_sets: # Substitute easy forms latex_chall_copy = latex_chall for i in range(len(chars_in_latex)): latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + eq_forms_latex_easy[order[i]].replace('Q', chars_in_latex[i]) + r'\right) ' ) next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_ones), "Answer in Latex": "", "Variation": "Equivalence-All-Easy", "Source": source }) # Substitute hard forms latex_chall_copy = latex_chall for i in range(len(chars_in_latex)): latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + eq_forms_latex_hard[order[i]].replace('Q', chars_in_latex[i]) + r'\right) ' ) next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_ones), "Answer in Latex": "", "Variation": "Equivalence-All-Hard", "Source": source }) # Generate single-symbolic substitutions (easy/hard) and numeric perturbation variants for i in range(len(chars_in_latex)): chars_left_in_latex = chars_in_latex.copy() chars_left_in_latex.pop(i) for j in range(len(eq_forms_latex_easy)): # Substitute one easy form latex_chall_copy = latex_chall replace_form = r' \left(' + eq_forms_latex_easy[j].replace('Q', chars_in_latex[i]) + r'\right) ' latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form ) for ch in chars_left_in_latex: latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '') next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_ones), "Answer in Latex": "", "Variation": "Equivalence-One-Easy", "Source": source }) # Substitute one hard form latex_chall_copy = latex_chall replace_form = r' \left(' + eq_forms_latex_hard[j].replace('Q', chars_in_latex[i]) + r'\right) ' latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form) for ch in chars_left_in_latex: latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '') next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_ones), "Answer in Latex": "", "Variation": "Equivalence-One-Hard", "Source": source }) # Numeric perturbation: replace one symbol with a random integer of increasing digit length for noise_digits in range(1, 11): latex_chall_copy = latex_chall sp_sym_ans_copy = sp_sym_ans nn1 = random.randint(10**(noise_digits-1), 10**noise_digits - 1) sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn1), evaluate=False) while check_for_problematic_symbols(sp_sym_ans_copy): print(f"Warning: Numeric-One noise for {item} contains problems: {sp_sym_ans_copy}. Retrying") nn1 = random.randint(10**(noise_digits-1), 10**noise_digits - 1) sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn1), evaluate=False) replace_form = r' \left(' + str(nn1) + r'\right) ' latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], replace_form) for ch in chars_left_in_latex: latex_chall_copy = replace_in_dollars(latex_chall_copy, ch, '') for sym in syms_in_latex: sp_sym_ans_copy = sp_sym_ans_copy.subs(sym, 1) latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy) next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_copy), "Answer in Latex": "", "Variation": f"Numeric-One-{noise_digits}", "Source": source }) # Numeric perturbation: replace all symbols with random integers of increasing digit length for noise_digits in range(1, 11): latex_chall_copy = latex_chall sp_sym_ans_copy = sp_sym_ans nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))] for i in range(len(chars_in_latex)): sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False) while check_for_problematic_symbols(sp_sym_ans_copy): print(f"Warning: Numeric-All noise for {item} contains problems: {sp_sym_ans_copy}. Retrying") nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))] for i in range(len(chars_in_latex)): sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False) for i in range(len(chars_in_latex)): latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + str(nn_lst[i]) + r'\right) ' ) # Remove "Assume ... ." clause from latex_chall if it exists latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy) # Add new item with rolling index next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_copy), "Answer in Latex": "", "Variation": f"Numeric-All-{noise_digits}", "Source": source }) # Generate variants with some symbols replaced by 1 (partial symbolic) for i in range(1, len(chars_in_latex)): oned_indexes = list(itertools.combinations(range(len(chars_in_latex)), i)) for oned_set in oned_indexes: latex_chall_copy = latex_chall sp_sym_ans_copy = sp_sym_ans for ind in oned_set: latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[ind], '') sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[ind], 1) next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_copy), "Answer in Latex": "", "Variation": f"Symbolic-{len(chars_in_latex) - i}", "Source": source }) # Add new_items to data before writing output data.extend(new_items) # Generate 'Numeric-All-2-S' variants - the 'Variance' subset def generate_NA2S(items, symnoise_chars, symnoise_syms, sym_dict, cur_ind, noise_digits, reps_num): next_ind = cur_ind new_items = [] for item in items: latex_chall = item.get("Challenge") sp_sym_ans = sp.sympify(item.get("Answer in Sympy"), locals = sym_dict) source = item.get("Source") chars_in_latex = [] syms_in_latex = [] # Find which symbolic noise characters are present in the LaTeX challenge for i in range(len(symnoise_chars)): if char_in_dollars(latex_chall, symnoise_chars[i]): chars_in_latex.append(symnoise_chars[i]) syms_in_latex.append(symnoise_syms[i]) if len(chars_in_latex) == 0: print("No symbolic parameters found inside math expressions in source: ",source) for _ in range(reps_num): latex_chall_copy = latex_chall sp_sym_ans_copy = sp_sym_ans # Generate random integer values for all symbolic chars nn_lst = [random.randint(10**(noise_digits-1), 10**(noise_digits) - 1) for _ in range(len(chars_in_latex))] for i in range(len(chars_in_latex)): sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False) while check_for_problematic_symbols(sp_sym_ans_copy): print(f"Warning: Numeric-All noise for {item} contains problems: {sp_sym_ans_copy}. Retrying") nn_lst = [random.randint(10**(noise_digits-1), 10**noise_digits - 1) for _ in range(len(chars_in_latex))] for i in range(len(chars_in_latex)): sp_sym_ans_copy = sp_sym_ans_copy.subs(syms_in_latex[i], sp.UnevaluatedExpr(nn_lst[i]), evaluate=False) for i in range(len(chars_in_latex)): latex_chall_copy = replace_in_dollars(latex_chall_copy, chars_in_latex[i], r' \left(' + str(nn_lst[i]) + r'\right) ' ) # Remove "Assume ... ." clause from latex_chall if it exists latex_chall_copy = re.sub(r'Assume.*?\.', '', latex_chall_copy) next_ind += 1 new_items.append({ "Index": str(next_ind), "Challenge": latex_chall_copy, "Answer in Sympy": str(sp_sym_ans_copy), "Answer in Latex": "", "Variation": f"Numeric-All-{noise_digits}-S", "Source": source }) # Add new_items to data before writing output data.extend(new_items) # Split items into regular and hypergeometric symbolic questions sym_var_items = [item for item in data if (item.get('Variation', '').strip() == 'Symbolic' and item.get('Source') not in hypergeomatric_question_sources)] hypergeometric_sym_var_items = [item for item in data if (item.get('Variation', '').strip() == 'Symbolic' and item.get('Source') in hypergeomatric_question_sources)] # Generate all variants for regular and hypergeometric items generate_variants(sym_var_items, symnoise_char_list, symnoise_sym_list, local_sym_dict, cur_data_len) cur_data_len = len(data) generate_variants(hypergeometric_sym_var_items, hg_symnoise_char_list, hg_symnoise_sym_list, hg_local_sym_dict, cur_data_len) cur_data_len = len(data) generate_NA2S(sym_var_items, symnoise_char_list, symnoise_sym_list, local_sym_dict, cur_data_len, 2, 50) cur_data_len = len(data) generate_NA2S(hypergeometric_sym_var_items, hg_symnoise_char_list, hg_symnoise_sym_list, hg_local_sym_dict, cur_data_len, 2, 50) cur_data_len = len(data) print("Final size of the ASyMOB dataset is: " ,cur_data_len) # Write the full dataset to a JSON file output_json_path = 'Full_ASyMOB_Dataset.json' with open(output_json_path, 'w', encoding='utf-8') as jf: json.dump(data, jf, ensure_ascii=False, indent=2)