Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
rishabh-sat commited on
Commit
4824257
·
verified ·
1 Parent(s): 916b51a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -0
README.md CHANGED
@@ -3,6 +3,8 @@ license: cc-by-nc-4.0
3
  ---
4
  # SentinelKilnDB - A Large-Scale Dataset and Benchmark for OBB Brick Kiln Detection in South Asia Using Satellite Imagery
5
 
 
 
6
  ## Abstract
7
 
8
  Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone, with brick manufacturing contributing significantly to this burden. In particular, the Indo-Gangetic Plain; a densely populated and highly polluted region spanning northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns contributing 8–14% of ambient air pollution. Traditional monitoring approaches, such as field surveys and manual annotation using tools like Google Earth Pro, are time and labor-intensive. Prior ML-based efforts for automated detection have relied on costly high-resolution commercial imagery and non-public datasets, limiting reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a publicly available, hand-validated benchmark of 62,671 brick kilns spanning three kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK), and Zigzag kilns—annotated with oriented bounding boxes (OBBs) across 2.8 million km2 using free and globally accessible Sentinel-2 imagery. We benchmark state-of-the-art oriented object detection models and evaluate generalization across in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables rigorous evaluation of geospatial generalization and robustness for low-resolution object detection, and provides a new testbed for ML models addressing real-world environmental and remote sensing challenges at a continental scale. Datasets and code are available in SentinelKiln Dataset and SentinelKiln Benchmark, under the Creative Commons Attribution–NonCommercial 4.0 International License.
 
3
  ---
4
  # SentinelKilnDB - A Large-Scale Dataset and Benchmark for OBB Brick Kiln Detection in South Asia Using Satellite Imagery
5
 
6
+ ## NeurIPS 2025 Datasets & Benchmarks Track
7
+
8
  ## Abstract
9
 
10
  Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone, with brick manufacturing contributing significantly to this burden. In particular, the Indo-Gangetic Plain; a densely populated and highly polluted region spanning northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns contributing 8–14% of ambient air pollution. Traditional monitoring approaches, such as field surveys and manual annotation using tools like Google Earth Pro, are time and labor-intensive. Prior ML-based efforts for automated detection have relied on costly high-resolution commercial imagery and non-public datasets, limiting reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a publicly available, hand-validated benchmark of 62,671 brick kilns spanning three kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK), and Zigzag kilns—annotated with oriented bounding boxes (OBBs) across 2.8 million km2 using free and globally accessible Sentinel-2 imagery. We benchmark state-of-the-art oriented object detection models and evaluate generalization across in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables rigorous evaluation of geospatial generalization and robustness for low-resolution object detection, and provides a new testbed for ML models addressing real-world environmental and remote sensing challenges at a continental scale. Datasets and code are available in SentinelKiln Dataset and SentinelKiln Benchmark, under the Creative Commons Attribution–NonCommercial 4.0 International License.