ApplesM5-Dataset / train_metrics.py
pax-synetic
initial commit
1ae42c8
raw
history blame
16.4 kB
import cv2
import numpy as np
import ultralytics
from pathlib import Path
from tqdm import tqdm
import json
from FileCrawler import FileCrawler
def compute_precision_recall(results, label_path, penalize_extra_correct=True):
if len(results) <= 0:
return 0.0, 0.0
# Ensure paths are valid
label_path = Path(label_path)
# Extract predictions
pred_boxes = results.boxes.xyxy.cpu().numpy() # Predicted bounding boxes [x1, y1, x2, y2]
pred_scores = results.boxes.conf.cpu().numpy() # Confidence scores
pred_classes = results.boxes.cls.cpu().numpy() # Predicted classes
# Read ground truth labels (YOLO format: class x_center y_center width height)
gt_boxes = []
gt_classes = []
with open(label_path, 'r') as f:
for line in f:
parts = line.strip().split()
if len(parts) < 5:
continue
cls = int(parts[0])
x_center, y_center, width, height = map(float, parts[1:5])
# Convert YOLO format to [x1, y1, x2, y2]
img = results[0].orig_img
img_h, img_w = img.shape[:2]
x1 = (x_center - width / 2) * img_w
y1 = (y_center - height / 2) * img_h
x2 = (x_center + width / 2) * img_w
y2 = (y_center + height / 2) * img_h
gt_boxes.append([x1, y1, x2, y2])
gt_classes.append(cls)
gt_boxes = np.array(gt_boxes)
gt_classes = np.array(gt_classes)
# Compute IoU between predicted and ground truth boxes
def compute_iou(box1, box2):
x1, y1, x2, y2 = box1
x1_g, y1_g, x2_g, y2_g = box2
# Calculate intersection coordinates
xx1 = max(x1, x1_g)
yy1 = max(y1, y1_g)
xx2 = min(x2, x2_g)
yy2 = min(y2, y2_g)
# Compute areas
inter_area = max(0, xx2 - xx1) * max(0, yy2 - yy1)
box1_area = (x2 - x1) * (y2 - y1)
box2_area = (x2_g - x1_g) * (y2_g - y1_g)
# Compute IoU
iou = inter_area / (box1_area + box2_area - inter_area + 1e-6)
return iou
# Match predictions to ground truth
iou_threshold = 0.5
true_positives = 0
false_positives = 0
false_negatives = len(gt_boxes) # Initially assume all GT boxes are missed
matched_gt_indices = set() # Track which ground truth boxes are matched
for pred_idx, (pred_box, pred_cls, pred_conf) in enumerate(zip(pred_boxes, pred_classes, pred_scores)):
best_iou = 0
best_gt_idx = -1
for gt_idx, (gt_box, gt_cls) in enumerate(zip(gt_boxes, gt_classes)):
if pred_cls == gt_cls: # Match classes
iou = compute_iou(pred_box, gt_box)
if iou > best_iou:
best_iou = iou
best_gt_idx = gt_idx
if best_iou >= iou_threshold:
if penalize_extra_correct:
# Only count as TP if the GT box hasn't been matched yet
if best_gt_idx not in matched_gt_indices:
true_positives += 1
matched_gt_indices.add(best_gt_idx)
false_negatives -= 1 # This GT box was detected
else:
false_positives += 1 # Extra correct prediction
else:
# Count as TP regardless of whether GT box was already matched
true_positives += 1
if best_gt_idx not in matched_gt_indices:
matched_gt_indices.add(best_gt_idx)
false_negatives -= 1 # This GT box was detected
else:
false_positives += 1 # Incorrect prediction
# Compute precision and recall
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
return precision, recall
def load_yolo_labels(label_path, img_width, img_height):
"""Load YOLO format labels and convert to absolute coordinates [x_min, y_min, w, h]."""
gt_boxes = []
with open(label_path, 'r') as f:
for line in f:
class_id, cx, cy, w, h = map(float, line.strip().split())
# Convert from normalized YOLO format to absolute coordinates
cx, cy, w, h = cx * img_width, cy * img_height, w * img_width, h * img_height
x_min = cx - w / 2
y_min = cy - h / 2
gt_boxes.append({'bbox': [x_min, y_min, w, h], 'category_id': int(class_id)})
return gt_boxes
def iou(box1, box2):
"""Calculate IoU between two boxes [x_min, y_min, w, h]."""
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
x1_max, y1_max = x1 + w1, y1 + h1
x2_max, y2_max = x2 + w2, y2 + h2
inter_x_min = max(x1, x2)
inter_y_min = max(y1, y2)
inter_x_max = min(x1_max, x2_max)
inter_y_max = min(y1_max, y2_max)
inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
union_area = (w1 * h1) + (w2 * h2) - inter_area
return inter_area / union_area if union_area > 0 else 0
def compute_ap(recall, precision):
"""Compute Average Precision from recall and precision arrays."""
recall = np.concatenate(([0], recall, [1]))
precision = np.concatenate(([0], precision, [0]))
for i in range(len(precision) - 1, 0, -1):
precision[i - 1] = max(precision[i - 1], precision[i])
i = np.where(recall[1:] != recall[:-1])[0]
ap = np.sum((recall[i + 1] - recall[i]) * precision[i + 1])
return ap
def compute_map(gt_boxes, pred_boxes, iou_thresholds=[0.5], penalize_extra_correct=True):
"""Compute mAP for a single class or multiple classes."""
aps = []
classes = set([box['category_id'] for box in gt_boxes] + [box['category_id'] for box in pred_boxes])
for cls in classes:
cls_gt = [box for box in gt_boxes if box['category_id'] == cls]
cls_pred = [box for box in pred_boxes if box['category_id'] == cls]
for iou_th in iou_thresholds:
# Sort predictions by confidence
cls_pred = sorted(cls_pred, key=lambda x: x['score'], reverse=True)
gt_count = len(cls_gt)
tp = np.zeros(len(cls_pred))
fp = np.zeros(len(cls_pred))
matched = set()
for i, pred in enumerate(cls_pred):
best_iou = 0
best_gt_idx = -1
for j, gt in enumerate(cls_gt):
if j in matched:
continue
iou_score = iou(pred['bbox'], gt['bbox'])
if iou_score > best_iou:
best_iou = iou_score
best_gt_idx = j
if best_iou >= iou_th and best_gt_idx >= 0:
if best_gt_idx not in matched:
tp[i] = 1
matched.add(best_gt_idx)
else:
fp[i] = 1
else:
if penalize_extra_correct:
fp[i] = 1
# Compute precision and recall
tp = np.cumsum(tp)
fp = np.cumsum(fp)
recall = tp / max(gt_count, 1)
precision = tp / np.maximum(tp + fp, 1e-9)
ap = compute_ap(recall, precision)
aps.append(ap)
map50 = np.mean([aps[i] for i in range(0, len(aps), len(iou_thresholds))]) if aps else 0
map50_95 = np.mean(aps) if len(iou_thresholds) > 1 else None
return map50, map50_95
def run_yolo_predictions(image_path, model, img=None):
# Load image
if img is None:
img = cv2.imread(image_path)
img_height, img_width = img.shape[:2]
# Run predictions
# results = model(img)[0] # Get first result (single image)
results = model.predict(
img,
# imgsz=640,
# persist=True,
# stream=True,
# show=True,
show=False,
# conf=0.00001,
conf=0.1,
# conf=0.3,
# conf=0.42,
# iou=0.9,
iou=0.2,
agnostic_nms=True,
verbose=False,
# verbose=True,
# tracker='custom_botsort.yaml'
)[0]
# Extract predictions
pred_boxes = []
for box in results.boxes:
x_min, y_min, x_max, y_max = box.xyxy[0].cpu().numpy()
conf = box.conf.cpu().numpy()
cls = int(box.cls.cpu().numpy())
pred_boxes.append({
'bbox': [x_min, y_min, x_max - x_min, y_max - y_min],
'category_id': cls,
'score': conf
})
return results, pred_boxes, img_width, img_height
def main(image_path, label_path, model):
# Load ground truth labels
img = cv2.imread(image_path)
img_width, img_height = img.shape[:2]
gt_boxes = load_yolo_labels(label_path, img_width, img_height)
# Run YOLO predictions
results, pred_boxes, _, _ = run_yolo_predictions(image_path, model)
# Compute mAP50 and mAP50:95
iou_thresholds = [0.5] # For mAP50 only
# For mAP50:95, use: iou_thresholds = np.arange(0.5, 1.0, 0.05)
precision, recall = compute_precision_recall(results, label_path, penalize_extra_correct=True)
precisionNoPenalty, recallNoPenalty = compute_precision_recall(results, label_path, penalize_extra_correct=False)
map50, _ = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=True)
map50NoPenalty, _ = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=False)
iou_thresholds = np.arange(0.5, 1.0, 0.05) # For mAP50:95
_, map50_95 = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=True)
_, map50_95NoPenalty = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=False)
return map50, map50NoPenalty, map50_95, map50_95NoPenalty, precision, recall, precisionNoPenalty, recallNoPenalty
def PutText(frame, text, loc, fontScale=1, color=(255,255,255), thickness=2):
cv2.putText(
frame,
text,
loc,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale,
color=(0,0,0),
thickness=thickness + 2,
lineType=cv2.LINE_AA
)
cv2.putText(
frame,
text,
loc,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale,
color=color,
thickness=thickness,
lineType=cv2.LINE_AA
)
def RenderBoxes(title, img, boxes):
for box in boxes:
[x_min, y_min, width, height] = bbox = box['bbox']
x0, y0, x1, y1 = int(x_min), int(y_min), int(x_min + width), int(y_min + height)
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 255, 0), 3)
PutText(img, title, (10, 30))
img[0,:] = 0
img[-1,:] = 0
img[:,0] = 0
img[:,-1] = 0
def VisualizeMetrics(userName, projectName, modelPaths, isRTDETR=False):
models = []
for modelName, modelPath in tqdm(modelPaths):
"""Run YOLOv8 predictions on an image and return bounding boxes."""
if isRTDETR:
model = ultralytics.RTDETR(modelPath)
else:
model = ultralytics.YOLO(modelPath, task='detect')
models.append(model)
pathValsDataset = f'/home/{userName}/datasets/ApplesM5/real/yolos/images/vals'
directoryNameContainsFilterSet = set([])
nameContainsFilterSet = set([])
extensionFilterSet = set(['.png', '.jpg'])
fileCrawlerVals = FileCrawler(pathValsDataset, directoryNameContainsFilterSet, nameContainsFilterSet, extensionFilterSet)
for yoloFile in tqdm(fileCrawlerVals._filesArr):
pathYoloLabelFile = yoloFile._path.replace('/yolos/images/', '/yolos/labels/').replace(yoloFile._extension, '.txt')
img = cv2.imread(yoloFile._path)
img_width, img_height = img.shape[:2]
gt_boxes = load_yolo_labels(pathYoloLabelFile, img_width, img_height)
imgLabels = img.copy()
RenderBoxes('Labels', imgLabels, gt_boxes)
imgsPredictions = [imgLabels]
for model, (modelName, _) in zip(models, modelPaths):
imgPredictions = img.copy()
imgsPredictions.append(imgPredictions)
results, pred_boxes, _, _ = run_yolo_predictions(None, model, img=img)
RenderBoxes(modelName, imgPredictions, pred_boxes)
imgsPredictions = np.hstack(imgsPredictions)
print(yoloFile._path)
cv2.imshow('imgsPredictions', imgsPredictions)
cv2.imwrite('imgsPredictions.png', imgsPredictions)
cv2.waitKey(0)
def ComputeMetrics(userName, projectName, modelPaths, isRTDETR=False):
pathValsDataset = f'/home/{userName}/datasets/ApplesM5/real/yolos/images/vals'
directoryNameContainsFilterSet = set([])
nameContainsFilterSet = set([])
extensionFilterSet = set(['.png', '.jpg'])
fileCrawlerVals = FileCrawler(pathValsDataset, directoryNameContainsFilterSet, nameContainsFilterSet, extensionFilterSet)
print(f'vals count: {len(fileCrawlerVals._filesArr)}')
mAPs = []
for modelName, modelPath in tqdm(modelPaths):
"""Run YOLOv8 predictions on an image and return bounding boxes."""
if isRTDETR:
model = ultralytics.RTDETR(modelPath)
else:
model = ultralytics.YOLO(modelPath, task='detect')
mAP50s = []
mAP50_95s = []
mAP50NoPenaltys = []
mAP50_95NoPenaltys = []
precisions = []
recalls = []
precisionsNoPenaltys = []
recallsNoPenaltys = []
for yoloFile in tqdm(fileCrawlerVals._filesArr):
pathYoloLabelFile = yoloFile._path.replace('/yolos/images/', '/yolos/labels/').replace(yoloFile._extension, '.txt')
mAP50, mAP50NoPenalty, mAP50_95, mAP50_95NoPenalty, precision, recall, precisionNoPenalty, recallNoPenalty = main(yoloFile._path, pathYoloLabelFile, model)
if mAP50 is not None:
mAP50s.append(mAP50)
if mAP50NoPenalty is not None:
mAP50NoPenaltys.append(mAP50NoPenalty)
if mAP50_95 is not None:
mAP50_95s.append(mAP50_95)
if mAP50_95NoPenalty is not None:
mAP50_95NoPenaltys.append(mAP50_95NoPenalty)
precisions.append(precision)
recalls.append(recall)
precisionsNoPenaltys.append(precisionNoPenalty)
recallsNoPenaltys.append(recallNoPenalty)
mAP50s = np.array(mAP50s)
mAP50_95s = np.array(mAP50_95s)
mAP50NoPenaltys = np.array(mAP50NoPenaltys)
mAP50_95NoPenaltys = np.array(mAP50_95NoPenaltys)
precisions = np.array(precisions)
recalls = np.array(recalls)
precisionsNoPenaltys = np.array(precisionsNoPenaltys)
recallsNoPenaltys = np.array(recallsNoPenaltys)
mAPs.append(
(
modelName,
(
f'mAP50: {np.mean(mAP50s):.4f}', f'mAP50-95: {np.mean(mAP50_95s):.4f}', f'mAP50-np: {np.mean(mAP50NoPenaltys):.4f}', f'mAP50-95-np: {np.mean(mAP50_95NoPenaltys):.4f}',
f'precision: {np.mean(precisions):.4f}', f'recall: {np.mean(recalls):.4f}', f'precision-np: {np.mean(precisionsNoPenaltys):.4f}', f'recall-np: {np.mean(recallsNoPenaltys):.4f}',
)
)
)
jsonString = json.dumps(mAPs, sort_keys=True, indent=2)
print(f'\n{projectName}\n', jsonString)
if __name__ == "__main__":
projectName = 'ApplesM5'
# modelVersion = 'rtdetr'
# modelSize = '-l'
modelVersion = '12'
modelSize = 'n'
modelName = f"{modelVersion}{modelSize}"
isRTDETR = ('rtdetr' in modelName)
#point the script at the corresponding trained best.pts
modelPaths = [
('real', rf'./runs/detect/{projectName}_{modelName}-detect-100_real_0/weights/best.pt'),
('real-original', rf'./runs/detect/{projectName}_{modelName}-detect-100_real-original_0/weights/best.pt'),
('synetic-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-val_0/weights/best.pt'),
('synetic-bg-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-bg-train+real-val_0/weights/best.pt'),
('synetic-train+real-original-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-original-val_0/weights/best.pt'),
('synetic-bg-train+real-original-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-bg-train+real-original-val_0/weights/best.pt'),
('synetic+real', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic+real_0/weights/best.pt'),
('synetic+real-original', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic+real-original_0/weights/best.pt'),
('real', rf'./runs/detect/{projectName}_{modelName}-detect-100_real_0/weights/best.pt'),
('synetic-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-val_0/weights/best.pt'),
]
userName = '{user}'
ComputeMetrics(userName, projectName, modelPaths, isRTDETR=isRTDETR)
# VisualizeMetrics(userName, projectName, modelPaths, isRTDETR=isRTDETR)