|
|
import cv2
|
|
|
import numpy as np
|
|
|
import ultralytics
|
|
|
from pathlib import Path
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
import json
|
|
|
|
|
|
from FileCrawler import FileCrawler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compute_precision_recall(results, label_path, penalize_extra_correct=True):
|
|
|
|
|
|
if len(results) <= 0:
|
|
|
return 0.0, 0.0
|
|
|
|
|
|
|
|
|
label_path = Path(label_path)
|
|
|
|
|
|
|
|
|
pred_boxes = results.boxes.xyxy.cpu().numpy()
|
|
|
pred_scores = results.boxes.conf.cpu().numpy()
|
|
|
pred_classes = results.boxes.cls.cpu().numpy()
|
|
|
|
|
|
|
|
|
gt_boxes = []
|
|
|
gt_classes = []
|
|
|
with open(label_path, 'r') as f:
|
|
|
for line in f:
|
|
|
parts = line.strip().split()
|
|
|
if len(parts) < 5:
|
|
|
continue
|
|
|
cls = int(parts[0])
|
|
|
x_center, y_center, width, height = map(float, parts[1:5])
|
|
|
|
|
|
img = results[0].orig_img
|
|
|
img_h, img_w = img.shape[:2]
|
|
|
x1 = (x_center - width / 2) * img_w
|
|
|
y1 = (y_center - height / 2) * img_h
|
|
|
x2 = (x_center + width / 2) * img_w
|
|
|
y2 = (y_center + height / 2) * img_h
|
|
|
gt_boxes.append([x1, y1, x2, y2])
|
|
|
gt_classes.append(cls)
|
|
|
|
|
|
gt_boxes = np.array(gt_boxes)
|
|
|
gt_classes = np.array(gt_classes)
|
|
|
|
|
|
|
|
|
def compute_iou(box1, box2):
|
|
|
x1, y1, x2, y2 = box1
|
|
|
x1_g, y1_g, x2_g, y2_g = box2
|
|
|
|
|
|
|
|
|
xx1 = max(x1, x1_g)
|
|
|
yy1 = max(y1, y1_g)
|
|
|
xx2 = min(x2, x2_g)
|
|
|
yy2 = min(y2, y2_g)
|
|
|
|
|
|
|
|
|
inter_area = max(0, xx2 - xx1) * max(0, yy2 - yy1)
|
|
|
box1_area = (x2 - x1) * (y2 - y1)
|
|
|
box2_area = (x2_g - x1_g) * (y2_g - y1_g)
|
|
|
|
|
|
|
|
|
iou = inter_area / (box1_area + box2_area - inter_area + 1e-6)
|
|
|
return iou
|
|
|
|
|
|
|
|
|
iou_threshold = 0.5
|
|
|
true_positives = 0
|
|
|
false_positives = 0
|
|
|
false_negatives = len(gt_boxes)
|
|
|
matched_gt_indices = set()
|
|
|
|
|
|
for pred_idx, (pred_box, pred_cls, pred_conf) in enumerate(zip(pred_boxes, pred_classes, pred_scores)):
|
|
|
best_iou = 0
|
|
|
best_gt_idx = -1
|
|
|
|
|
|
for gt_idx, (gt_box, gt_cls) in enumerate(zip(gt_boxes, gt_classes)):
|
|
|
if pred_cls == gt_cls:
|
|
|
iou = compute_iou(pred_box, gt_box)
|
|
|
if iou > best_iou:
|
|
|
best_iou = iou
|
|
|
best_gt_idx = gt_idx
|
|
|
|
|
|
if best_iou >= iou_threshold:
|
|
|
if penalize_extra_correct:
|
|
|
|
|
|
if best_gt_idx not in matched_gt_indices:
|
|
|
true_positives += 1
|
|
|
matched_gt_indices.add(best_gt_idx)
|
|
|
false_negatives -= 1
|
|
|
else:
|
|
|
false_positives += 1
|
|
|
else:
|
|
|
|
|
|
true_positives += 1
|
|
|
if best_gt_idx not in matched_gt_indices:
|
|
|
matched_gt_indices.add(best_gt_idx)
|
|
|
false_negatives -= 1
|
|
|
else:
|
|
|
false_positives += 1
|
|
|
|
|
|
|
|
|
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
|
|
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
|
|
|
|
|
return precision, recall
|
|
|
|
|
|
|
|
|
|
|
|
def load_yolo_labels(label_path, img_width, img_height):
|
|
|
"""Load YOLO format labels and convert to absolute coordinates [x_min, y_min, w, h]."""
|
|
|
gt_boxes = []
|
|
|
with open(label_path, 'r') as f:
|
|
|
for line in f:
|
|
|
class_id, cx, cy, w, h = map(float, line.strip().split())
|
|
|
|
|
|
cx, cy, w, h = cx * img_width, cy * img_height, w * img_width, h * img_height
|
|
|
x_min = cx - w / 2
|
|
|
y_min = cy - h / 2
|
|
|
gt_boxes.append({'bbox': [x_min, y_min, w, h], 'category_id': int(class_id)})
|
|
|
return gt_boxes
|
|
|
|
|
|
def iou(box1, box2):
|
|
|
"""Calculate IoU between two boxes [x_min, y_min, w, h]."""
|
|
|
x1, y1, w1, h1 = box1
|
|
|
x2, y2, w2, h2 = box2
|
|
|
x1_max, y1_max = x1 + w1, y1 + h1
|
|
|
x2_max, y2_max = x2 + w2, y2 + h2
|
|
|
|
|
|
inter_x_min = max(x1, x2)
|
|
|
inter_y_min = max(y1, y2)
|
|
|
inter_x_max = min(x1_max, x2_max)
|
|
|
inter_y_max = min(y1_max, y2_max)
|
|
|
|
|
|
inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
|
|
|
union_area = (w1 * h1) + (w2 * h2) - inter_area
|
|
|
return inter_area / union_area if union_area > 0 else 0
|
|
|
|
|
|
def compute_ap(recall, precision):
|
|
|
"""Compute Average Precision from recall and precision arrays."""
|
|
|
recall = np.concatenate(([0], recall, [1]))
|
|
|
precision = np.concatenate(([0], precision, [0]))
|
|
|
for i in range(len(precision) - 1, 0, -1):
|
|
|
precision[i - 1] = max(precision[i - 1], precision[i])
|
|
|
i = np.where(recall[1:] != recall[:-1])[0]
|
|
|
ap = np.sum((recall[i + 1] - recall[i]) * precision[i + 1])
|
|
|
return ap
|
|
|
|
|
|
def compute_map(gt_boxes, pred_boxes, iou_thresholds=[0.5], penalize_extra_correct=True):
|
|
|
"""Compute mAP for a single class or multiple classes."""
|
|
|
aps = []
|
|
|
classes = set([box['category_id'] for box in gt_boxes] + [box['category_id'] for box in pred_boxes])
|
|
|
|
|
|
for cls in classes:
|
|
|
cls_gt = [box for box in gt_boxes if box['category_id'] == cls]
|
|
|
cls_pred = [box for box in pred_boxes if box['category_id'] == cls]
|
|
|
for iou_th in iou_thresholds:
|
|
|
|
|
|
cls_pred = sorted(cls_pred, key=lambda x: x['score'], reverse=True)
|
|
|
gt_count = len(cls_gt)
|
|
|
tp = np.zeros(len(cls_pred))
|
|
|
fp = np.zeros(len(cls_pred))
|
|
|
matched = set()
|
|
|
|
|
|
for i, pred in enumerate(cls_pred):
|
|
|
best_iou = 0
|
|
|
best_gt_idx = -1
|
|
|
for j, gt in enumerate(cls_gt):
|
|
|
if j in matched:
|
|
|
continue
|
|
|
iou_score = iou(pred['bbox'], gt['bbox'])
|
|
|
if iou_score > best_iou:
|
|
|
best_iou = iou_score
|
|
|
best_gt_idx = j
|
|
|
if best_iou >= iou_th and best_gt_idx >= 0:
|
|
|
if best_gt_idx not in matched:
|
|
|
tp[i] = 1
|
|
|
matched.add(best_gt_idx)
|
|
|
else:
|
|
|
fp[i] = 1
|
|
|
else:
|
|
|
if penalize_extra_correct:
|
|
|
fp[i] = 1
|
|
|
|
|
|
|
|
|
tp = np.cumsum(tp)
|
|
|
fp = np.cumsum(fp)
|
|
|
recall = tp / max(gt_count, 1)
|
|
|
precision = tp / np.maximum(tp + fp, 1e-9)
|
|
|
ap = compute_ap(recall, precision)
|
|
|
aps.append(ap)
|
|
|
|
|
|
map50 = np.mean([aps[i] for i in range(0, len(aps), len(iou_thresholds))]) if aps else 0
|
|
|
map50_95 = np.mean(aps) if len(iou_thresholds) > 1 else None
|
|
|
return map50, map50_95
|
|
|
|
|
|
def run_yolo_predictions(image_path, model, img=None):
|
|
|
|
|
|
if img is None:
|
|
|
img = cv2.imread(image_path)
|
|
|
img_height, img_width = img.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
results = model.predict(
|
|
|
img,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
show=False,
|
|
|
|
|
|
|
|
|
conf=0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iou=0.2,
|
|
|
agnostic_nms=True,
|
|
|
verbose=False,
|
|
|
|
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
|
|
pred_boxes = []
|
|
|
for box in results.boxes:
|
|
|
x_min, y_min, x_max, y_max = box.xyxy[0].cpu().numpy()
|
|
|
conf = box.conf.cpu().numpy()
|
|
|
cls = int(box.cls.cpu().numpy())
|
|
|
pred_boxes.append({
|
|
|
'bbox': [x_min, y_min, x_max - x_min, y_max - y_min],
|
|
|
'category_id': cls,
|
|
|
'score': conf
|
|
|
})
|
|
|
|
|
|
return results, pred_boxes, img_width, img_height
|
|
|
|
|
|
def main(image_path, label_path, model):
|
|
|
|
|
|
img = cv2.imread(image_path)
|
|
|
img_width, img_height = img.shape[:2]
|
|
|
gt_boxes = load_yolo_labels(label_path, img_width, img_height)
|
|
|
|
|
|
|
|
|
results, pred_boxes, _, _ = run_yolo_predictions(image_path, model)
|
|
|
|
|
|
|
|
|
iou_thresholds = [0.5]
|
|
|
|
|
|
|
|
|
precision, recall = compute_precision_recall(results, label_path, penalize_extra_correct=True)
|
|
|
precisionNoPenalty, recallNoPenalty = compute_precision_recall(results, label_path, penalize_extra_correct=False)
|
|
|
|
|
|
map50, _ = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=True)
|
|
|
map50NoPenalty, _ = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=False)
|
|
|
|
|
|
iou_thresholds = np.arange(0.5, 1.0, 0.05)
|
|
|
_, map50_95 = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=True)
|
|
|
_, map50_95NoPenalty = compute_map(gt_boxes, pred_boxes, iou_thresholds, penalize_extra_correct=False)
|
|
|
|
|
|
return map50, map50NoPenalty, map50_95, map50_95NoPenalty, precision, recall, precisionNoPenalty, recallNoPenalty
|
|
|
|
|
|
|
|
|
def PutText(frame, text, loc, fontScale=1, color=(255,255,255), thickness=2):
|
|
|
cv2.putText(
|
|
|
frame,
|
|
|
text,
|
|
|
loc,
|
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
fontScale,
|
|
|
color=(0,0,0),
|
|
|
thickness=thickness + 2,
|
|
|
lineType=cv2.LINE_AA
|
|
|
)
|
|
|
cv2.putText(
|
|
|
frame,
|
|
|
text,
|
|
|
loc,
|
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
fontScale,
|
|
|
color=color,
|
|
|
thickness=thickness,
|
|
|
lineType=cv2.LINE_AA
|
|
|
)
|
|
|
|
|
|
|
|
|
def RenderBoxes(title, img, boxes):
|
|
|
for box in boxes:
|
|
|
[x_min, y_min, width, height] = bbox = box['bbox']
|
|
|
|
|
|
x0, y0, x1, y1 = int(x_min), int(y_min), int(x_min + width), int(y_min + height)
|
|
|
|
|
|
cv2.rectangle(img, (x0, y0), (x1, y1), (0, 255, 0), 3)
|
|
|
|
|
|
PutText(img, title, (10, 30))
|
|
|
|
|
|
img[0,:] = 0
|
|
|
img[-1,:] = 0
|
|
|
img[:,0] = 0
|
|
|
img[:,-1] = 0
|
|
|
|
|
|
|
|
|
|
|
|
def VisualizeMetrics(userName, projectName, modelPaths, isRTDETR=False):
|
|
|
models = []
|
|
|
for modelName, modelPath in tqdm(modelPaths):
|
|
|
"""Run YOLOv8 predictions on an image and return bounding boxes."""
|
|
|
if isRTDETR:
|
|
|
model = ultralytics.RTDETR(modelPath)
|
|
|
else:
|
|
|
model = ultralytics.YOLO(modelPath, task='detect')
|
|
|
|
|
|
models.append(model)
|
|
|
|
|
|
pathValsDataset = f'/home/{userName}/datasets/ApplesM5/real/yolos/images/vals'
|
|
|
|
|
|
directoryNameContainsFilterSet = set([])
|
|
|
nameContainsFilterSet = set([])
|
|
|
extensionFilterSet = set(['.png', '.jpg'])
|
|
|
fileCrawlerVals = FileCrawler(pathValsDataset, directoryNameContainsFilterSet, nameContainsFilterSet, extensionFilterSet)
|
|
|
|
|
|
for yoloFile in tqdm(fileCrawlerVals._filesArr):
|
|
|
pathYoloLabelFile = yoloFile._path.replace('/yolos/images/', '/yolos/labels/').replace(yoloFile._extension, '.txt')
|
|
|
|
|
|
img = cv2.imread(yoloFile._path)
|
|
|
img_width, img_height = img.shape[:2]
|
|
|
|
|
|
gt_boxes = load_yolo_labels(pathYoloLabelFile, img_width, img_height)
|
|
|
|
|
|
imgLabels = img.copy()
|
|
|
|
|
|
RenderBoxes('Labels', imgLabels, gt_boxes)
|
|
|
|
|
|
imgsPredictions = [imgLabels]
|
|
|
for model, (modelName, _) in zip(models, modelPaths):
|
|
|
imgPredictions = img.copy()
|
|
|
imgsPredictions.append(imgPredictions)
|
|
|
|
|
|
results, pred_boxes, _, _ = run_yolo_predictions(None, model, img=img)
|
|
|
|
|
|
RenderBoxes(modelName, imgPredictions, pred_boxes)
|
|
|
|
|
|
imgsPredictions = np.hstack(imgsPredictions)
|
|
|
|
|
|
print(yoloFile._path)
|
|
|
cv2.imshow('imgsPredictions', imgsPredictions)
|
|
|
cv2.imwrite('imgsPredictions.png', imgsPredictions)
|
|
|
cv2.waitKey(0)
|
|
|
|
|
|
|
|
|
|
|
|
def ComputeMetrics(userName, projectName, modelPaths, isRTDETR=False):
|
|
|
|
|
|
pathValsDataset = f'/home/{userName}/datasets/ApplesM5/real/yolos/images/vals'
|
|
|
|
|
|
directoryNameContainsFilterSet = set([])
|
|
|
nameContainsFilterSet = set([])
|
|
|
extensionFilterSet = set(['.png', '.jpg'])
|
|
|
fileCrawlerVals = FileCrawler(pathValsDataset, directoryNameContainsFilterSet, nameContainsFilterSet, extensionFilterSet)
|
|
|
|
|
|
print(f'vals count: {len(fileCrawlerVals._filesArr)}')
|
|
|
|
|
|
mAPs = []
|
|
|
for modelName, modelPath in tqdm(modelPaths):
|
|
|
"""Run YOLOv8 predictions on an image and return bounding boxes."""
|
|
|
|
|
|
if isRTDETR:
|
|
|
model = ultralytics.RTDETR(modelPath)
|
|
|
else:
|
|
|
model = ultralytics.YOLO(modelPath, task='detect')
|
|
|
|
|
|
mAP50s = []
|
|
|
mAP50_95s = []
|
|
|
mAP50NoPenaltys = []
|
|
|
mAP50_95NoPenaltys = []
|
|
|
|
|
|
precisions = []
|
|
|
recalls = []
|
|
|
precisionsNoPenaltys = []
|
|
|
recallsNoPenaltys = []
|
|
|
|
|
|
for yoloFile in tqdm(fileCrawlerVals._filesArr):
|
|
|
pathYoloLabelFile = yoloFile._path.replace('/yolos/images/', '/yolos/labels/').replace(yoloFile._extension, '.txt')
|
|
|
|
|
|
mAP50, mAP50NoPenalty, mAP50_95, mAP50_95NoPenalty, precision, recall, precisionNoPenalty, recallNoPenalty = main(yoloFile._path, pathYoloLabelFile, model)
|
|
|
if mAP50 is not None:
|
|
|
mAP50s.append(mAP50)
|
|
|
if mAP50NoPenalty is not None:
|
|
|
mAP50NoPenaltys.append(mAP50NoPenalty)
|
|
|
|
|
|
if mAP50_95 is not None:
|
|
|
mAP50_95s.append(mAP50_95)
|
|
|
if mAP50_95NoPenalty is not None:
|
|
|
mAP50_95NoPenaltys.append(mAP50_95NoPenalty)
|
|
|
|
|
|
precisions.append(precision)
|
|
|
recalls.append(recall)
|
|
|
precisionsNoPenaltys.append(precisionNoPenalty)
|
|
|
recallsNoPenaltys.append(recallNoPenalty)
|
|
|
|
|
|
|
|
|
mAP50s = np.array(mAP50s)
|
|
|
mAP50_95s = np.array(mAP50_95s)
|
|
|
mAP50NoPenaltys = np.array(mAP50NoPenaltys)
|
|
|
mAP50_95NoPenaltys = np.array(mAP50_95NoPenaltys)
|
|
|
|
|
|
precisions = np.array(precisions)
|
|
|
recalls = np.array(recalls)
|
|
|
precisionsNoPenaltys = np.array(precisionsNoPenaltys)
|
|
|
recallsNoPenaltys = np.array(recallsNoPenaltys)
|
|
|
|
|
|
mAPs.append(
|
|
|
(
|
|
|
modelName,
|
|
|
(
|
|
|
f'mAP50: {np.mean(mAP50s):.4f}', f'mAP50-95: {np.mean(mAP50_95s):.4f}', f'mAP50-np: {np.mean(mAP50NoPenaltys):.4f}', f'mAP50-95-np: {np.mean(mAP50_95NoPenaltys):.4f}',
|
|
|
f'precision: {np.mean(precisions):.4f}', f'recall: {np.mean(recalls):.4f}', f'precision-np: {np.mean(precisionsNoPenaltys):.4f}', f'recall-np: {np.mean(recallsNoPenaltys):.4f}',
|
|
|
)
|
|
|
)
|
|
|
)
|
|
|
|
|
|
|
|
|
jsonString = json.dumps(mAPs, sort_keys=True, indent=2)
|
|
|
|
|
|
print(f'\n{projectName}\n', jsonString)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
projectName = 'ApplesM5'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modelVersion = '12'
|
|
|
modelSize = 'n'
|
|
|
|
|
|
modelName = f"{modelVersion}{modelSize}"
|
|
|
|
|
|
isRTDETR = ('rtdetr' in modelName)
|
|
|
|
|
|
|
|
|
|
|
|
modelPaths = [
|
|
|
('real', rf'./runs/detect/{projectName}_{modelName}-detect-100_real_0/weights/best.pt'),
|
|
|
('real-original', rf'./runs/detect/{projectName}_{modelName}-detect-100_real-original_0/weights/best.pt'),
|
|
|
|
|
|
('synetic-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-val_0/weights/best.pt'),
|
|
|
('synetic-bg-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-bg-train+real-val_0/weights/best.pt'),
|
|
|
|
|
|
('synetic-train+real-original-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-original-val_0/weights/best.pt'),
|
|
|
('synetic-bg-train+real-original-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-bg-train+real-original-val_0/weights/best.pt'),
|
|
|
|
|
|
('synetic+real', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic+real_0/weights/best.pt'),
|
|
|
('synetic+real-original', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic+real-original_0/weights/best.pt'),
|
|
|
|
|
|
('real', rf'./runs/detect/{projectName}_{modelName}-detect-100_real_0/weights/best.pt'),
|
|
|
('synetic-train+real-val', rf'./runs/detect/{projectName}_{modelName}-detect-100_synetic-train+real-val_0/weights/best.pt'),
|
|
|
]
|
|
|
|
|
|
|
|
|
userName = '{user}'
|
|
|
|
|
|
ComputeMetrics(userName, projectName, modelPaths, isRTDETR=isRTDETR)
|
|
|
|
|
|
|
|
|
|