The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'BloodPressure', 'Glucose', 'BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'SkinThickness', 'Age', 'Insulin', 'Outcome'}) and 19 missing columns ({'opticdisc_diameter', 'ma2', 'class', 'exudate1', 'ma5', 'exudate3', 'am_fm_classification', 'quality', 'exudate6', 'exudate2', 'pre_screening', 'exudate7', 'macula_opticdisc_distance', 'exudate5', 'exudate8', 'ma1', 'ma3', 'ma6', 'ma4'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TahaGorji/DiabetesDeepInsight-CSV/diabetes.csv (at revision 9d422f2308bc4875c80e4f5988016001a1a258d0)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Pregnancies: int64
Glucose: int64
BloodPressure: int64
SkinThickness: int64
Insulin: int64
BMI: double
DiabetesPedigreeFunction: double
Age: int64
Outcome: int64
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1318
to
{'quality': Value(dtype='int64', id=None), 'pre_screening': Value(dtype='int64', id=None), 'ma1': Value(dtype='int64', id=None), 'ma2': Value(dtype='int64', id=None), 'ma3': Value(dtype='int64', id=None), 'ma4': Value(dtype='int64', id=None), 'ma5': Value(dtype='int64', id=None), 'ma6': Value(dtype='int64', id=None), 'exudate1': Value(dtype='float64', id=None), 'exudate2': Value(dtype='float64', id=None), 'exudate3': Value(dtype='float64', id=None), 'exudate5': Value(dtype='float64', id=None), 'exudate6': Value(dtype='float64', id=None), 'exudate7': Value(dtype='float64', id=None), 'exudate8': Value(dtype='float64', id=None), 'macula_opticdisc_distance': Value(dtype='float64', id=None), 'opticdisc_diameter': Value(dtype='float64', id=None), 'am_fm_classification': Value(dtype='int64', id=None), 'class': Value(dtype='int64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 9 new columns ({'BloodPressure', 'Glucose', 'BMI', 'DiabetesPedigreeFunction', 'Pregnancies', 'SkinThickness', 'Age', 'Insulin', 'Outcome'}) and 19 missing columns ({'opticdisc_diameter', 'ma2', 'class', 'exudate1', 'ma5', 'exudate3', 'am_fm_classification', 'quality', 'exudate6', 'exudate2', 'pre_screening', 'exudate7', 'macula_opticdisc_distance', 'exudate5', 'exudate8', 'ma1', 'ma3', 'ma6', 'ma4'}).
This happened while the csv dataset builder was generating data using
hf://datasets/TahaGorji/DiabetesDeepInsight-CSV/diabetes.csv (at revision 9d422f2308bc4875c80e4f5988016001a1a258d0)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
quality
int64 | pre_screening
int64 | ma1
int64 | ma2
int64 | ma3
int64 | ma4
int64 | ma5
int64 | ma6
int64 | exudate1
float64 | exudate2
float64 | exudate3
float64 | exudate5
float64 | exudate6
float64 | exudate7
float64 | exudate8
float64 | macula_opticdisc_distance
float64 | opticdisc_diameter
float64 | am_fm_classification
int64 | class
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1
| 1
| 22
| 22
| 22
| 19
| 18
| 14
| 49.895756
| 17.775994
| 5.27092
| 0.018632
| 0.006864
| 0.003923
| 0.003923
| 0.486903
| 0.100025
| 1
| 0
|
1
| 1
| 24
| 24
| 22
| 18
| 16
| 13
| 57.709936
| 23.799994
| 3.325423
| 0.003903
| 0.003903
| 0.003903
| 0.003903
| 0.520908
| 0.144414
| 0
| 0
|
1
| 1
| 62
| 60
| 59
| 54
| 47
| 33
| 55.831441
| 27.993933
| 12.687485
| 1.393889
| 0.373252
| 0.041817
| 0.007744
| 0.530904
| 0.128548
| 0
| 1
|
1
| 1
| 55
| 53
| 53
| 50
| 43
| 31
| 40.467228
| 18.445954
| 9.118901
| 0.840261
| 0.272434
| 0.007653
| 0.001531
| 0.483284
| 0.11479
| 0
| 0
|
1
| 1
| 44
| 44
| 44
| 41
| 39
| 27
| 18.026254
| 8.570709
| 0.410381
| 0
| 0
| 0
| 0
| 0.475935
| 0.123572
| 0
| 1
|
1
| 1
| 44
| 43
| 41
| 41
| 37
| 29
| 28.3564
| 6.935636
| 2.305771
| 0
| 0
| 0
| 0
| 0.502831
| 0.126741
| 0
| 1
|
1
| 0
| 29
| 29
| 29
| 27
| 25
| 16
| 15.448398
| 9.113819
| 1.633493
| 0
| 0
| 0
| 0
| 0.541743
| 0.139575
| 0
| 1
|
1
| 1
| 6
| 6
| 6
| 6
| 2
| 1
| 20.679649
| 9.497786
| 1.22366
| 0
| 0
| 0
| 0
| 0.576318
| 0.071071
| 1
| 0
|
1
| 1
| 22
| 21
| 18
| 15
| 13
| 10
| 66.691933
| 23.545543
| 6.151117
| 0
| 0
| 0
| 0
| 0.500073
| 0.116793
| 0
| 1
|
1
| 1
| 79
| 75
| 73
| 71
| 64
| 47
| 22.141784
| 10.054384
| 0.874633
| 0.023386
| 0
| 0
| 0
| 0.560959
| 0.109134
| 0
| 1
|
1
| 1
| 45
| 45
| 45
| 43
| 40
| 32
| 84.358401
| 50.977459
| 17.293722
| 0
| 0
| 0
| 0
| 0.546008
| 0.112378
| 0
| 0
|
1
| 0
| 25
| 25
| 25
| 23
| 22
| 18
| 22.480047
| 13.949995
| 0.436232
| 0
| 0
| 0
| 0
| 0.551682
| 0.139657
| 1
| 0
|
1
| 1
| 70
| 69
| 65
| 63
| 63
| 50
| 10.5601
| 3.108358
| 0.625511
| 0.103985
| 0.004799
| 0
| 0
| 0.534396
| 0.089587
| 0
| 1
|
1
| 1
| 48
| 43
| 39
| 32
| 27
| 18
| 23.012798
| 6.737583
| 2.403903
| 0.011437
| 0
| 0
| 0
| 0.501554
| 0.138287
| 1
| 1
|
1
| 1
| 94
| 93
| 92
| 89
| 86
| 77
| 8.610822
| 1.981319
| 0.401183
| 0
| 0
| 0
| 0
| 0.541277
| 0.124505
| 0
| 0
|
1
| 1
| 20
| 18
| 16
| 15
| 13
| 9
| 65.113664
| 33.124797
| 8.785379
| 0.051811
| 0.002933
| 0.000978
| 0.000978
| 0.569458
| 0.089936
| 1
| 0
|
1
| 1
| 105
| 95
| 81
| 66
| 46
| 32
| 123.053484
| 70.57101
| 37.409891
| 14.786668
| 6.114911
| 2.34574
| 1.002243
| 0.524461
| 0.134247
| 1
| 1
|
1
| 1
| 25
| 25
| 24
| 23
| 22
| 19
| 17.03406
| 9.976938
| 1.067243
| 0.46779
| 0.306697
| 0.188975
| 0.130114
| 0.552002
| 0.108428
| 0
| 0
|
1
| 1
| 64
| 64
| 63
| 58
| 55
| 40
| 19.673459
| 6.064866
| 0.907342
| 0
| 0
| 0
| 0
| 0.551182
| 0.098591
| 0
| 0
|
1
| 0
| 46
| 41
| 39
| 32
| 23
| 15
| 115.533777
| 21.293312
| 9.665742
| 0.329396
| 0.186
| 0.118458
| 0.071698
| 0.540472
| 0.104949
| 1
| 1
|
1
| 1
| 37
| 37
| 37
| 34
| 31
| 23
| 61.357614
| 35.165912
| 8.114027
| 0.178499
| 0.010772
| 0
| 0
| 0.478189
| 0.110793
| 0
| 0
|
1
| 1
| 19
| 17
| 15
| 12
| 12
| 7
| 179.703958
| 34.678202
| 13.018953
| 0.023003
| 0.005001
| 0.002
| 0
| 0.470425
| 0.094014
| 1
| 1
|
1
| 0
| 37
| 34
| 31
| 30
| 28
| 24
| 8.818234
| 3.161544
| 1.900918
| 1.29287
| 0.165831
| 0
| 0
| 0.538223
| 0.09827
| 0
| 1
|
1
| 1
| 10
| 10
| 9
| 9
| 9
| 6
| 72.938941
| 20.285362
| 9.793215
| 0.040814
| 0
| 0
| 0
| 0.528929
| 0.108156
| 1
| 0
|
1
| 1
| 5
| 5
| 5
| 5
| 4
| 3
| 133.054234
| 6.890885
| 2.718365
| 0.01794
| 0.011608
| 0.003166
| 0.001055
| 0.588627
| 0.109748
| 1
| 1
|
1
| 1
| 40
| 38
| 33
| 25
| 20
| 12
| 73.082699
| 23.121256
| 13.093588
| 3.845287
| 2.028783
| 0.518568
| 0.10715
| 0.527112
| 0.105129
| 1
| 1
|
1
| 1
| 55
| 53
| 51
| 47
| 39
| 26
| 71.337302
| 39.430203
| 21.117569
| 0.636703
| 0.032852
| 0
| 0
| 0.540769
| 0.117329
| 0
| 0
|
1
| 1
| 99
| 98
| 68
| 53
| 42
| 27
| 298.06851
| 50.269654
| 33.693698
| 6.124441
| 1.748958
| 0.358444
| 0.181282
| 0.556481
| 0.117421
| 1
| 1
|
1
| 1
| 45
| 45
| 45
| 43
| 37
| 24
| 35.173512
| 15.421144
| 5.206171
| 0.371425
| 0.017095
| 0
| 0
| 0.543355
| 0.11811
| 0
| 0
|
1
| 1
| 103
| 89
| 83
| 71
| 60
| 38
| 11.025085
| 3.762343
| 0.015592
| 0.003118
| 0.003118
| 0.001559
| 0.001559
| 0.488566
| 0.134091
| 0
| 1
|
1
| 1
| 12
| 12
| 11
| 11
| 10
| 8
| 31.303995
| 2.021039
| 0.310613
| 0
| 0
| 0
| 0
| 0.566789
| 0.096681
| 1
| 0
|
1
| 1
| 42
| 38
| 38
| 37
| 35
| 32
| 12.494963
| 4.42648
| 0.588359
| 0
| 0
| 0
| 0
| 0.561081
| 0.099592
| 0
| 1
|
1
| 1
| 107
| 98
| 77
| 63
| 47
| 28
| 199.429033
| 44.82088
| 25.534925
| 0.242466
| 0.011447
| 0.003122
| 0.002081
| 0.49131
| 0.138403
| 1
| 1
|
1
| 1
| 9
| 9
| 9
| 9
| 8
| 5
| 196.172269
| 36.529744
| 18.431154
| 0.05935
| 0
| 0
| 0
| 0.5215
| 0.108467
| 0
| 0
|
1
| 1
| 64
| 64
| 62
| 53
| 50
| 31
| 30.775909
| 14.45127
| 3.074836
| 0.156114
| 0.071935
| 0
| 0
| 0.471605
| 0.099484
| 0
| 1
|
1
| 0
| 30
| 30
| 30
| 29
| 27
| 21
| 5.16331
| 0.846716
| 0.003019
| 0
| 0
| 0
| 0
| 0.498254
| 0.125272
| 0
| 0
|
1
| 1
| 2
| 2
| 2
| 2
| 2
| 1
| 47.930183
| 6.587595
| 1.470575
| 0.002068
| 0
| 0
| 0
| 0.519195
| 0.114792
| 1
| 1
|
1
| 1
| 72
| 68
| 67
| 62
| 54
| 38
| 25.33878
| 10.490842
| 3.395
| 0.061476
| 0.001537
| 0
| 0
| 0.490344
| 0.115267
| 0
| 1
|
1
| 1
| 43
| 42
| 42
| 39
| 37
| 27
| 39.211044
| 18.275524
| 3.939161
| 0.018209
| 0.009104
| 0.00607
| 0.004552
| 0.47098
| 0.121392
| 0
| 0
|
1
| 0
| 16
| 16
| 16
| 13
| 10
| 8
| 45.545822
| 22.493089
| 4.828992
| 0.433024
| 0.263874
| 0.029964
| 0.010632
| 0.510826
| 0.123721
| 0
| 1
|
1
| 1
| 76
| 74
| 72
| 72
| 66
| 42
| 23.311611
| 7.943621
| 2.067625
| 0.139197
| 0.059432
| 0
| 0
| 0.533349
| 0.092277
| 0
| 1
|
1
| 1
| 5
| 5
| 5
| 5
| 4
| 2
| 69.552393
| 31.66465
| 13.057079
| 0
| 0
| 0
| 0
| 0.502259
| 0.109015
| 0
| 0
|
1
| 1
| 44
| 43
| 42
| 41
| 39
| 27
| 173.757198
| 38.295535
| 21.430906
| 3.135307
| 1.043
| 0.17138
| 0.080959
| 0.520223
| 0.114604
| 1
| 1
|
1
| 1
| 13
| 12
| 11
| 9
| 8
| 6
| 2.126707
| 0.337744
| 0
| 0
| 0
| 0
| 0
| 0.493133
| 0.135714
| 0
| 0
|
1
| 1
| 4
| 4
| 4
| 4
| 4
| 4
| 78.557051
| 20.402173
| 5.151197
| 0.034114
| 0
| 0
| 0
| 0.506806
| 0.114747
| 1
| 0
|
1
| 1
| 37
| 35
| 34
| 30
| 28
| 22
| 20.993883
| 11.376063
| 0.981876
| 0
| 0
| 0
| 0
| 0.520133
| 0.123305
| 0
| 1
|
1
| 1
| 64
| 62
| 60
| 58
| 51
| 43
| 42.140207
| 20.794294
| 7.617959
| 0.137514
| 0
| 0
| 0
| 0.485808
| 0.087509
| 0
| 1
|
1
| 1
| 7
| 7
| 7
| 7
| 7
| 4
| 37.238886
| 17.444478
| 2.888475
| 0.034375
| 0.008594
| 0.005729
| 0.003819
| 0.499921
| 0.148959
| 0
| 0
|
1
| 1
| 42
| 42
| 37
| 36
| 35
| 26
| 79.513425
| 58.724897
| 2.791295
| 0.216964
| 0.167724
| 0.144643
| 0
| 0.558575
| 0.166185
| 0
| 1
|
1
| 1
| 15
| 15
| 14
| 12
| 10
| 9
| 70.413923
| 40.163401
| 11.161267
| 0.317158
| 0.011568
| 0.005784
| 0.000964
| 0.424173
| 0.120501
| 1
| 0
|
1
| 1
| 22
| 22
| 20
| 19
| 16
| 13
| 7.666737
| 2.188929
| 0.161388
| 0
| 0
| 0
| 0
| 0.528319
| 0.159822
| 0
| 0
|
1
| 1
| 33
| 33
| 33
| 32
| 32
| 31
| 4.645313
| 0.233589
| 0.003115
| 0
| 0
| 0
| 0
| 0.515357
| 0.099665
| 1
| 1
|
1
| 1
| 19
| 19
| 18
| 16
| 12
| 11
| 32.664999
| 13.682969
| 4.325823
| 0.107486
| 0.04104
| 0.003909
| 0.003909
| 0.505168
| 0.104555
| 0
| 0
|
1
| 1
| 12
| 12
| 12
| 12
| 10
| 7
| 60.619638
| 25.412079
| 4.447385
| 0.011826
| 0
| 0
| 0
| 0.507336
| 0.115299
| 1
| 0
|
1
| 1
| 49
| 48
| 45
| 40
| 37
| 26
| 26.347993
| 13.666809
| 2.556415
| 0
| 0
| 0
| 0
| 0.557765
| 0.113308
| 0
| 1
|
1
| 1
| 107
| 97
| 89
| 73
| 61
| 39
| 46.898288
| 26.625319
| 11.290695
| 5.258325
| 3.758994
| 2.169764
| 1.330199
| 0.511867
| 0.097517
| 0
| 1
|
1
| 1
| 22
| 19
| 19
| 15
| 12
| 9
| 70.192324
| 24.971335
| 4.403699
| 0.394666
| 0.207558
| 0.089976
| 0.039876
| 0.518668
| 0.098155
| 1
| 1
|
1
| 1
| 15
| 15
| 14
| 14
| 11
| 9
| 120.037514
| 55.14125
| 9.176269
| 0.007691
| 0.004807
| 0.004807
| 0.003845
| 0.514624
| 0.085562
| 0
| 0
|
1
| 1
| 56
| 55
| 46
| 41
| 37
| 28
| 6.960789
| 2.747318
| 1.544124
| 0.201806
| 0.160528
| 0.133009
| 0.11772
| 0.522871
| 0.102432
| 1
| 1
|
1
| 0
| 7
| 7
| 7
| 7
| 6
| 4
| 172.825204
| 76.289701
| 17.212219
| 0.012138
| 0
| 0
| 0
| 0.512196
| 0.142626
| 1
| 1
|
1
| 1
| 31
| 31
| 29
| 28
| 25
| 15
| 45.711634
| 21.604391
| 3.893095
| 0.023916
| 0.00104
| 0
| 0
| 0.488219
| 0.110221
| 0
| 1
|
1
| 1
| 24
| 24
| 23
| 21
| 19
| 15
| 96.599355
| 36.501107
| 10.878852
| 0.005772
| 0.003848
| 0
| 0
| 0.527487
| 0.105825
| 0
| 0
|
1
| 1
| 18
| 18
| 18
| 17
| 15
| 9
| 72.630707
| 25.142031
| 10.053525
| 0.26608
| 0.019519
| 0
| 0
| 0.553314
| 0.093488
| 0
| 1
|
1
| 1
| 14
| 14
| 14
| 14
| 12
| 9
| 125.731993
| 48.659028
| 16.775043
| 0.00595
| 0.00595
| 0.00595
| 0.00595
| 0.55084
| 0.111073
| 1
| 0
|
1
| 1
| 101
| 87
| 73
| 60
| 42
| 24
| 145.799804
| 15.768882
| 6.647874
| 0.004039
| 0
| 0
| 0
| 0.568974
| 0.064631
| 0
| 1
|
1
| 1
| 19
| 19
| 15
| 15
| 15
| 11
| 3.332213
| 0.302928
| 0.054801
| 0
| 0
| 0
| 0
| 0.519713
| 0.118736
| 1
| 1
|
1
| 1
| 61
| 60
| 58
| 57
| 54
| 42
| 32.028807
| 12.793278
| 3.658368
| 0.023592
| 0.020447
| 0.014155
| 0.006291
| 0.575902
| 0.102233
| 0
| 0
|
1
| 1
| 56
| 55
| 54
| 51
| 46
| 31
| 41.15413
| 19.139912
| 8.664596
| 0.004631
| 0
| 0
| 0
| 0.487138
| 0.120406
| 0
| 1
|
1
| 1
| 51
| 50
| 48
| 42
| 37
| 22
| 110.644051
| 54.594325
| 12.291867
| 0.100604
| 0.027786
| 0.003833
| 0.003833
| 0.530484
| 0.10252
| 1
| 1
|
1
| 1
| 73
| 71
| 71
| 70
| 70
| 65
| 44.343736
| 29.424664
| 6.624892
| 0.056873
| 0
| 0
| 0
| 0.534769
| 0.079929
| 0
| 0
|
1
| 1
| 66
| 65
| 65
| 64
| 63
| 53
| 11.103445
| 4.009015
| 0.397164
| 0.076318
| 0.052955
| 0.035823
| 0.01869
| 0.543196
| 0.096565
| 0
| 1
|
1
| 1
| 17
| 16
| 16
| 16
| 12
| 10
| 54.483137
| 14.79985
| 3.203629
| 0.01462
| 0.003899
| 0
| 0
| 0.522769
| 0.081869
| 1
| 0
|
1
| 1
| 56
| 55
| 55
| 51
| 47
| 36
| 36.371217
| 10.641034
| 2.563113
| 0.016762
| 0
| 0
| 0
| 0.525089
| 0.057906
| 0
| 1
|
1
| 1
| 66
| 62
| 61
| 61
| 57
| 44
| 42.595095
| 20.475159
| 2.783822
| 0.498044
| 0.215204
| 0
| 0
| 0.527952
| 0.086082
| 0
| 0
|
1
| 1
| 70
| 64
| 61
| 54
| 51
| 34
| 29.073507
| 9.481386
| 4.487734
| 0.172195
| 0.051811
| 0.006095
| 0.001524
| 0.489025
| 0.091431
| 0
| 1
|
1
| 1
| 43
| 42
| 42
| 40
| 39
| 34
| 21.612661
| 9.669272
| 0.903438
| 0.128841
| 0.082272
| 0.066749
| 0.058987
| 0.541183
| 0.099347
| 0
| 1
|
1
| 1
| 39
| 39
| 36
| 35
| 30
| 27
| 66.289899
| 18.410266
| 9.29063
| 0.118617
| 0.012324
| 0.010783
| 0.003081
| 0.502645
| 0.09551
| 0
| 0
|
1
| 1
| 25
| 24
| 24
| 22
| 21
| 15
| 51.246256
| 23.520502
| 5.945784
| 0
| 0
| 0
| 0
| 0.517687
| 0.149189
| 0
| 0
|
1
| 1
| 19
| 18
| 17
| 14
| 13
| 8
| 47.000422
| 28.290417
| 12.426334
| 0.086458
| 0
| 0
| 0
| 0.532509
| 0.086458
| 1
| 0
|
1
| 1
| 34
| 34
| 28
| 22
| 17
| 9
| 80.102809
| 35.595044
| 7.515836
| 0.25993
| 0.216609
| 0.184839
| 0.003851
| 0.515703
| 0.095308
| 0
| 1
|
1
| 1
| 95
| 83
| 81
| 73
| 62
| 42
| 40.186635
| 17.350155
| 10.183585
| 1.325939
| 0.411552
| 0.034038
| 0.004642
| 0.478644
| 0.092831
| 0
| 1
|
1
| 1
| 17
| 17
| 17
| 17
| 17
| 10
| 22.690652
| 6.918374
| 1.165543
| 0.013441
| 0.005761
| 0.005761
| 0.0048
| 0.499478
| 0.097929
| 0
| 0
|
1
| 1
| 54
| 54
| 54
| 53
| 51
| 41
| 14.512332
| 7.266234
| 0.597904
| 0
| 0
| 0
| 0
| 0.491181
| 0.116173
| 0
| 1
|
1
| 1
| 60
| 56
| 46
| 37
| 29
| 19
| 247.798988
| 55.343818
| 32.199603
| 3.642385
| 1.822757
| 1.132445
| 0.313873
| 0.489107
| 0.077165
| 0
| 1
|
1
| 1
| 34
| 33
| 27
| 21
| 16
| 9
| 13.273712
| 4.294346
| 1.511429
| 0.192774
| 0.107666
| 0.003076
| 0
| 0.574559
| 0.086133
| 0
| 1
|
1
| 1
| 52
| 51
| 51
| 50
| 48
| 34
| 22.951977
| 10.029318
| 4.423472
| 0.054096
| 0.023184
| 0
| 0
| 0.497064
| 0.100463
| 0
| 0
|
1
| 1
| 22
| 20
| 16
| 13
| 10
| 7
| 87.69468
| 36.084155
| 15.664896
| 0
| 0
| 0
| 0
| 0.524302
| 0.086838
| 1
| 1
|
1
| 1
| 35
| 35
| 34
| 30
| 27
| 21
| 20.224045
| 10.671793
| 0.937143
| 0
| 0
| 0
| 0
| 0.528512
| 0.100633
| 0
| 1
|
1
| 1
| 11
| 11
| 9
| 9
| 8
| 5
| 13.935559
| 6.857066
| 2.138412
| 0.675558
| 0.435678
| 0.333166
| 0.041005
| 0.523698
| 0.108663
| 0
| 1
|
1
| 1
| 15
| 14
| 14
| 14
| 13
| 8
| 24.963152
| 1.112323
| 0.202241
| 0
| 0
| 0
| 0
| 0.518514
| 0.097993
| 0
| 1
|
1
| 1
| 35
| 34
| 33
| 31
| 23
| 14
| 64.555398
| 32.798346
| 12.322802
| 2.101132
| 1.0735
| 0.324978
| 0.126868
| 0.568962
| 0.089784
| 1
| 0
|
1
| 1
| 79
| 74
| 69
| 64
| 57
| 37
| 31.73432
| 3.922031
| 1.132117
| 0
| 0
| 0
| 0
| 0.490258
| 0.111231
| 0
| 1
|
1
| 1
| 63
| 62
| 62
| 58
| 53
| 42
| 42.29046
| 19.897005
| 10.561198
| 0.40339
| 0.085245
| 0
| 0
| 0.468996
| 0.097422
| 0
| 1
|
1
| 1
| 11
| 11
| 11
| 11
| 10
| 9
| 78.775093
| 45.688227
| 17.21856
| 0.008165
| 0
| 0
| 0
| 0.540203
| 0.082669
| 1
| 0
|
1
| 1
| 45
| 40
| 34
| 30
| 19
| 12
| 123.298724
| 39.026421
| 20.514816
| 4.346491
| 1.503958
| 1.030547
| 0.474445
| 0.528052
| 0.112668
| 1
| 1
|
1
| 1
| 29
| 29
| 27
| 25
| 21
| 18
| 90.97488
| 49.911174
| 23.987895
| 0.751442
| 0.158978
| 0.014812
| 0.006912
| 0.487065
| 0.115531
| 0
| 0
|
1
| 1
| 58
| 57
| 56
| 56
| 54
| 43
| 52.80355
| 31.473528
| 5.661383
| 0.017227
| 0
| 0
| 0
| 0.491265
| 0.076738
| 0
| 1
|
1
| 1
| 24
| 24
| 22
| 22
| 19
| 15
| 89.107549
| 60.484696
| 20.952812
| 0.073661
| 0
| 0
| 0
| 0.505949
| 0.084035
| 1
| 0
|
1
| 1
| 49
| 48
| 48
| 47
| 45
| 39
| 30.842267
| 13.341782
| 3.718794
| 0.036135
| 0
| 0
| 0
| 0.514957
| 0.102122
| 0
| 0
|
1
| 1
| 11
| 10
| 10
| 6
| 5
| 5
| 104.72803
| 31.381846
| 7.475142
| 0.029167
| 0
| 0
| 0
| 0.563954
| 0.126044
| 1
| 1
|
DiabetesDeepInsight-CSV
A comprehensive, multi-source CSV collection for Type 2 Diabetes prediction, combining clinical indicators and retinopathy features. Ideal for researchers and practitioners in medical AI and data science.
🚀 Highlights
- Multi-Dataset Fusion: Integrates Pima Indians, BRFSS surveys, and Retinopathy Debrecen—over 300,000 records in total.
- Clinical & Retinopathy Features: Blood tests, demographics, lifestyle factors, and retinal image–derived biomarkers.
- Balanced & Stratified: Includes 50/50 splits, three-class→binary conversions, and curated train/test splits.
- Plug‐and‐Play CSVs: Ready for immediate ingestion with popular ML frameworks (scikit-learn, XGBoost, PyTorch).
📂 Included Files
diabetes.csv
Pima Indians Diabetes Database (8 clinical features + Outcome).diabetes_data_upload.csv
Alternate Pima format, ensuring consistency for cross-validation.diabetes_binary_health_indicators_BRFSS2015.csv
CDC BRFSS 2015 health survey (binary diabetes flag, demographics, labs).diabetes_binary_5050split_health_indicators_BRFSS2015.csv
Balanced 50/50 subset of BRFSS 2015 (equal cases/controls).diabetes_012_health_indicators_BRFSS2015.csv
BRFSS 2015 three-class (“No”, “Pre-diabetes”, “Diabetes”) converted to binary.Retinopathy_Debrecen.csv
Tabular features from EyePACS retinal exams (0/1 retinopathy → proxy for diabetes).diabetic_data.csv
(Optional) 130-US Hospitals clinical records—can be extended for readmission or ICD-9-based diabetes flags.
✨ Key Features
Rich Clinical Indicators
- Age, BMI, blood pressure, insulin, lipid profiles, lifestyle habits (smoking, activity), etc.
Retinopathy-Derived Biomarkers
- Vessel diameter, hemorrhage counts, texture features—ideal for image-to-CSV pipelines.
Preprocessed & Label-Aligned
- Unified
Outcomecolumn (0 = No Diabetes, 1 = Type 2 Diabetes) across all CSVs.
- Unified
Unlock deeper insights and achieve >95% accuracy with integrated clinical & retinopathy features! 🎉
- Downloads last month
- 10