nielsr HF Staff commited on
Commit
6a3be3e
·
verified ·
1 Parent(s): acc0688

Improve dataset card: Add metadata, links, description, and citation for FinAuditing

Browse files

This pull request significantly enhances the dataset card for **FinAuditing** by:

- Adding relevant `task_categories` (`text-retrieval`, `text-classification`, `question-answering`), `language: en`, and `tags` (`finance`, `auditing`, `xbrl`, `us-gaap`) to the metadata for improved discoverability.
- Including a direct link to the paper ([FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs](https://huggingface.co/papers/2510.08886)).
- Providing links to both the dataset's GitHub repository (`https://github.com/The-FinAI/FinAuditing.git`) and the associated evaluation framework (`https://github.com/The-FinAI/FinBen`).
- Adding a detailed description of the benchmark, outlining its purpose and explaining the three complementary subtasks (FinSM, FinRE, FinMR), leveraging information from the paper abstract and the project's GitHub README.
- Listing all released datasets within the benchmark along with their individual descriptions.
- Including the BibTeX citation for proper academic attribution.

These improvements will make the FinAuditing dataset more informative and accessible to researchers on the Hugging Face Hub.

Files changed (1) hide show
  1. README.md +58 -0
README.md CHANGED
@@ -1,4 +1,15 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: query
@@ -26,3 +37,50 @@ configs:
26
  - split: test
27
  path: data/test-*
28
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ task_categories:
3
+ - text-retrieval
4
+ - text-classification
5
+ - question-answering
6
+ language:
7
+ - en
8
+ tags:
9
+ - finance
10
+ - auditing
11
+ - xbrl
12
+ - us-gaap
13
  dataset_info:
14
  features:
15
  - name: query
 
37
  - split: test
38
  path: data/test-*
39
  ---
40
+
41
+ # FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs
42
+
43
+ FinAuditing is the first taxonomy-aligned, structure-aware, multi-document benchmark designed for evaluating Large Language Models (LLMs) on complex financial auditing tasks. Built from real US-GAAP-compliant XBRL filings, it addresses the challenges of automating and verifying financial auditing due to the complexities of Generally Accepted Accounting Principles (GAAP) and the hierarchical structure of eXtensible Business Reporting Language (XBRL) filings.
44
+
45
+ **Paper:** [FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs](https://huggingface.co/papers/2510.08886)
46
+ **Dataset GitHub Repository:** https://github.com/The-FinAI/FinAuditing.git
47
+ **Evaluation Framework:** [https://github.com/The-FinAI/FinBen](https://github.com/The-FinAI/FinBen)
48
+
49
+ ## Overview
50
+
51
+ The FinAuditing benchmark defines three complementary subtasks, each targeting a distinct aspect of structured auditing reasoning:
52
+
53
+ * **FinSM (Semantic Consistency):** This subtask evaluates information retrieval. Given a query describing a financial term (e.g., currency or concentration of credit risk), an XBRL filing, and a US-GAAP taxonomy, the task is to identify the set of mismatched US-GAAP tags after retrieval.
54
+ * **FinRE (Relational Consistency):** This is a relation extraction task. Given two specific elements ($e_1$ and $e_2$), an XBRL filing, and a US-GAAP taxonomy, the goal is to classify three predefined relation error types between them.
55
+ * **FinMR (Numerical Consistency):** A mathematical reasoning task. Given two questions ($q_1$ concerning the extraction of a reported value and $q_2$ pertaining to the calculation of the corresponding real value), an XBRL filing, and a US-GAAP taxonomy, the task is to extract the reported value for a given instance and compute its numeric value to verify correctness.
56
+
57
+ Extensive zero-shot experiments on 13 state-of-the-art LLMs using FinAuditing revealed inconsistent performance across semantic, relational, and mathematical dimensions, with significant accuracy drops (up to 60-90%) when reasoning over hierarchical multi-document structures. This highlights systematic limitations of current LLMs in taxonomy-grounded financial reasoning and establishes FinAuditing as a foundation for developing trustworthy, structure-aware, and regulation-aligned financial intelligence systems.
58
+
59
+ ## Datasets Released
60
+
61
+ The FinAuditing benchmark includes the following datasets for evaluation:
62
+
63
+ | 📂 Dataset | 📝 Description |
64
+ | :------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
65
+ | [**FinSM**](https://huggingface.co/datasets/TheFinAI/FinSM) | Evaluation set for FinSM subtask within FinAuditing benchmark. This task follows the information retrieval paradigm: given a query describing a financial term that represents either currency or concentration of credit risk, an XBRL filing, and a US-GAAP taxonomy, the output is the set of mismatched US-GAAP tags after retrieval. |\
66
+ | [**FinRE**](https://huggingface.co/datasets/TheFinAI/FinRE) | Evaluation set for FinRE subtask within FinAuditing benchmark. This is a relation extraction task, given two specific elements $e_1$ and $e_2$, an XBRL filing, and a US-GAAP taxonomy, the goal of this task is to classify three relation error types. |\
67
+ | [**FinMR**](https://huggingface.co/datasets/TheFinAI/FinMR) | Evaluation set for FinMR subtask within FinAuditing benchmark. This is a mathematical reasoning task, given two questions $q_1$ and $q_2$, where $q_1$ concerns the extraction of a reported value and $q_2$ pertains to the calculation of the corresponding real value, an XBRL filing, and a US-GAAP taxonomy, the task is to extract the reported value for a given instance in the XBRL filing and to compute the numeric value for that instance, which is then used to verify whether the reported value is correct. |\
68
+ | [**FinSM_Sub**](https://huggingface.co/datasets/TheFinAI/FinSM_Sub) | FinSM subset for ICAIF 2025. |\
69
+ | [**FinRE_Sub**](https://huggingface.co/datasets/TheFinAI/FinRE_Sub) | FinRE subset for ICAIF 2025. |\
70
+ | [**FinMR_Sub**](https://huggingface.co/datasets/TheFinAI/FinMR_Sub) | FinMR subset for ICAIF 2025. |\
71
+
72
+ ## Citation
73
+
74
+ If you find our benchmark useful, please cite:
75
+
76
+ ```bibtex
77
+ @misc{wang2025finauditingfinancialtaxonomystructuredmultidocument,
78
+ title={FinAuditing: A Financial Taxonomy-Structured Multi-Document Benchmark for Evaluating LLMs},
79
+ author={Yan Wang and Keyi Wang and Shanshan Yang and Jaisal Patel and Jeff Zhao and Fengran Mo and Xueqing Peng and Lingfei Qian and Jimin Huang and Guojun Xiong and Xiao-Yang Liu and Jian-Yun Nie},
80
+ year={2025},
81
+ eprint={2510.08886},
82
+ archivePrefix={arXiv},
83
+ primaryClass={cs.CL},
84
+ url={https://arxiv.org/abs/2510.08886},
85
+ }
86
+ ```