Update README.md
Browse files
README.md
CHANGED
|
@@ -4,41 +4,80 @@ tags:
|
|
| 4 |
- Autonomous Driving
|
| 5 |
- Computer Vision
|
| 6 |
---
|
| 7 |
-
# Dataset
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
|
| 19 |
```
|
| 20 |
pip install nuscenes-devkit
|
| 21 |
```
|
| 22 |
|
| 23 |
-
## Usage:
|
| 24 |
Import NuScenes devkit:
|
| 25 |
```
|
| 26 |
from nuscenes.nuscenes import NuScenes
|
| 27 |
```
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
```
|
| 31 |
# The "version" variable is the name of the folder holding all .json metadata tables.
|
| 32 |
location = 10
|
| 33 |
-
|
| 34 |
```
|
| 35 |
|
| 36 |
-
|
|
|
|
| 37 |
```
|
| 38 |
-
|
| 39 |
```
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
## Scene
|
| 43 |
To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
|
| 44 |
```
|
|
@@ -76,7 +115,8 @@ Output:
|
|
| 76 |
- `intersection`: location index.
|
| 77 |
- `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.
|
| 78 |
|
| 79 |
-
|
|
|
|
| 80 |
## Sample
|
| 81 |
Get the first sample (frame) of one scene:
|
| 82 |
```
|
|
@@ -109,7 +149,8 @@ Output:
|
|
| 109 |
- `data`: dict of data tokens of this sample's sensor data.
|
| 110 |
- `anns`: empty as we do not have annotation data at this moment.
|
| 111 |
|
| 112 |
-
|
|
|
|
| 113 |
## Sample Data
|
| 114 |
Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
|
| 115 |
```
|
|
@@ -174,7 +215,7 @@ array([[661.094568 , 0. , 370.6625195],
|
|
| 174 |
[ 0. , 0. , 1. ]]))
|
| 175 |
```
|
| 176 |
|
| 177 |
-

|
| 242 |
|
| 243 |
|
| 244 |
---
|
|
@@ -330,7 +370,8 @@ CAM_FRONT_CENTER pose:
|
|
| 330 |
|
| 331 |
```
|
| 332 |
|
| 333 |
-
|
|
|
|
| 334 |
## LiDAR-Image projection
|
| 335 |
- Use NuScenes devkit's `render_pointcloud_in_image()` method.
|
| 336 |
- The first variable is a sample token.
|
|
@@ -345,4 +386,8 @@ nusc.render_pointcloud_in_image(my_sample['token'],
|
|
| 345 |
|
| 346 |
Output:
|
| 347 |
|
| 348 |
-

|
| 10 |
|
| 11 |
+
<br/>
|
| 12 |
|
| 13 |
+
## Welcome to the tutorial of Open MARS Dataset!
|
| 14 |
|
| 15 |
+
Our paper has been accepted on CVPR 2024 🎉🎉🎉
|
| 16 |
+
|
| 17 |
+
Checkout our [project website](https://ai4ce.github.io/MARS/) for demo videos.
|
| 18 |
+
Codes to reproduce the videos are available in `/visualize` folder of `main` branch.
|
| 19 |
+
|
| 20 |
+
<br/>
|
| 21 |
+
|
| 22 |
+
## Intro
|
| 23 |
+
### The MARS dataset is collected with a fleet of autonomous vehicles from [MayMobility](https://maymobility.com/).
|
| 24 |
+
|
| 25 |
+
Our dataset uses the same structure as the [NuScenes](https://www.nuscenes.org/nuscenes) Dataset:
|
| 26 |
+
|
| 27 |
+
- Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene.
|
| 28 |
+
- Multiagent: the whole set is a NuScenes object, and each multiagent encounter is one scene.
|
| 29 |
|
| 30 |
+
<br/>
|
| 31 |
+
|
| 32 |
+
## Download
|
| 33 |
+
Both Multiagent and Multitraversal subsets are now available for [download on huggingface](https://huggingface.co/datasets/ai4ce/MARS).
|
| 34 |
+
|
| 35 |
+
<br/>
|
| 36 |
+
|
| 37 |
+
## Overview
|
| 38 |
+
This tutorial explains how the NuScenes structure works in our dataset, including how you may access a scene and query its samples of sensor data.
|
| 39 |
+
|
| 40 |
+
- [Devkit Initialization](#initialization)
|
| 41 |
+
- [Multitraversal](#load-multitraversal)
|
| 42 |
+
- [Multiagent](#load-multiagent)
|
| 43 |
+
- [Scene](#scene)
|
| 44 |
+
- [Sample](#sample)
|
| 45 |
+
- [Sample Data](#sample-data)
|
| 46 |
+
- [Camera](#camera-data)
|
| 47 |
+
- [LiDAR](#lidar-data)
|
| 48 |
+
- [IMU](#imu-data)
|
| 49 |
+
- [Ego & Sensor Pose](#vehicle-and-sensor-pose)
|
| 50 |
+
- [LiDAR-Image projection](#lidar-image-projection)
|
| 51 |
+
|
| 52 |
+
<br/>
|
| 53 |
+
|
| 54 |
+
## Initialization
|
| 55 |
First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
|
| 56 |
```
|
| 57 |
pip install nuscenes-devkit
|
| 58 |
```
|
| 59 |
|
|
|
|
| 60 |
Import NuScenes devkit:
|
| 61 |
```
|
| 62 |
from nuscenes.nuscenes import NuScenes
|
| 63 |
```
|
| 64 |
|
| 65 |
+
#### Load Multitraversal
|
| 66 |
+
loading data of location 10:
|
| 67 |
```
|
| 68 |
# The "version" variable is the name of the folder holding all .json metadata tables.
|
| 69 |
location = 10
|
| 70 |
+
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True)
|
| 71 |
```
|
| 72 |
|
| 73 |
+
#### Load Multiagent
|
| 74 |
+
loading data for the full set:
|
| 75 |
```
|
| 76 |
+
nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True)
|
| 77 |
```
|
| 78 |
|
| 79 |
+
<br/>
|
| 80 |
+
|
| 81 |
## Scene
|
| 82 |
To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
|
| 83 |
```
|
|
|
|
| 115 |
- `intersection`: location index.
|
| 116 |
- `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.
|
| 117 |
|
| 118 |
+
<br/>
|
| 119 |
+
|
| 120 |
## Sample
|
| 121 |
Get the first sample (frame) of one scene:
|
| 122 |
```
|
|
|
|
| 149 |
- `data`: dict of data tokens of this sample's sensor data.
|
| 150 |
- `anns`: empty as we do not have annotation data at this moment.
|
| 151 |
|
| 152 |
+
<br/>
|
| 153 |
+
|
| 154 |
## Sample Data
|
| 155 |
Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
|
| 156 |
```
|
|
|
|
| 215 |
[ 0. , 0. , 1. ]]))
|
| 216 |
```
|
| 217 |
|
| 218 |
+

|
| 219 |
|
| 220 |
---
|
| 221 |
### LiDAR Data
|
|
|
|
| 278 |
2.6000000e+01 7.5000000e+01]]
|
| 279 |
```
|
| 280 |
|
| 281 |
+

|
|
|
|
| 282 |
|
| 283 |
|
| 284 |
---
|
|
|
|
| 370 |
|
| 371 |
```
|
| 372 |
|
| 373 |
+
<br/>
|
| 374 |
+
|
| 375 |
## LiDAR-Image projection
|
| 376 |
- Use NuScenes devkit's `render_pointcloud_in_image()` method.
|
| 377 |
- The first variable is a sample token.
|
|
|
|
| 386 |
|
| 387 |
Output:
|
| 388 |
|
| 389 |
+

|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|