Datasets:
Commit
·
9b97275
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/1.0.0/dummy_data.zip +3 -0
- scicite.py +153 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"default": {"description": "\nThis is a dataset for classifying citation intents in academic papers.\nThe main citation intent label for each Json object is specified with the label\nkey while the citation context is specified in with a context key. Example:\n{\n 'string': 'In chacma baboons, male-infant relationships can be linked to both\n formation of friendships and paternity success [30,31].'\n 'sectionName': 'Introduction',\n 'label': 'background',\n 'citingPaperId': '7a6b2d4b405439',\n 'citedPaperId': '9d1abadc55b5e0',\n ...\n }\nYou may obtain the full information about the paper using the provided paper ids\nwith the Semantic Scholar API (https://api.semanticscholar.org/).\nThe labels are:\nMethod, Background, Result\n", "citation": "\n@InProceedings{Cohan2019Structural,\n author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady},\n title={Structural Scaffolds for Citation Intent Classification in Scientific Publications},\n booktitle=\"NAACL\",\n year=\"2019\"\n}\n", "homepage": "https://github.com/allenai/scicite", "license": "", "features": {"string": {"dtype": "string", "id": null, "_type": "Value"}, "sectionName": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["method", "background", "result"], "names_file": null, "id": null, "_type": "ClassLabel"}, "citingPaperId": {"dtype": "string", "id": null, "_type": "Value"}, "citedPaperId": {"dtype": "string", "id": null, "_type": "Value"}, "excerpt_index": {"dtype": "int32", "id": null, "_type": "Value"}, "isKeyCitation": {"dtype": "bool", "id": null, "_type": "Value"}, "label2": {"num_classes": 4, "names": ["supportive", "not_supportive", "cant_determine", "none"], "names_file": null, "id": null, "_type": "ClassLabel"}, "citeEnd": {"dtype": "int64", "id": null, "_type": "Value"}, "citeStart": {"dtype": "int64", "id": null, "_type": "Value"}, "source": {"num_classes": 7, "names": ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"], "names_file": null, "id": null, "_type": "ClassLabel"}, "label_confidence": {"dtype": "float32", "id": null, "_type": "Value"}, "label2_confidence": {"dtype": "float32", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scicite", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 870809, "num_examples": 1859, "dataset_name": "scicite"}, "train": {"name": "train", "num_bytes": 3843904, "num_examples": 8194, "dataset_name": "scicite"}, "validation": {"name": "validation", "num_bytes": 430296, "num_examples": 916, "dataset_name": "scicite"}}, "download_checksums": {"https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz": {"num_bytes": 23189911, "checksum": "711ece2c4e61d116c8ae5bb07e9fbb2ee9ff7bba004b4cab7fbd0ac3af499193"}}, "download_size": 23189911, "dataset_size": 5145009, "size_in_bytes": 28334920}}
|
dummy/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fc8243e61ee200c6f7b6c4c3859e234dd07ad7bcd4f789edd17435ca514fe82
|
| 3 |
+
size 3118
|
scicite.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""TODO(scicite): Add a description here."""
|
| 18 |
+
|
| 19 |
+
from __future__ import absolute_import, division, print_function
|
| 20 |
+
|
| 21 |
+
import json
|
| 22 |
+
import os
|
| 23 |
+
|
| 24 |
+
import datasets
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_CITATION = """
|
| 28 |
+
@InProceedings{Cohan2019Structural,
|
| 29 |
+
author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady},
|
| 30 |
+
title={Structural Scaffolds for Citation Intent Classification in Scientific Publications},
|
| 31 |
+
booktitle={NAACL},
|
| 32 |
+
year={2019}
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_DESCRIPTION = """
|
| 37 |
+
This is a dataset for classifying citation intents in academic papers.
|
| 38 |
+
The main citation intent label for each Json object is specified with the label
|
| 39 |
+
key while the citation context is specified in with a context key. Example:
|
| 40 |
+
{
|
| 41 |
+
'string': 'In chacma baboons, male-infant relationships can be linked to both
|
| 42 |
+
formation of friendships and paternity success [30,31].'
|
| 43 |
+
'sectionName': 'Introduction',
|
| 44 |
+
'label': 'background',
|
| 45 |
+
'citingPaperId': '7a6b2d4b405439',
|
| 46 |
+
'citedPaperId': '9d1abadc55b5e0',
|
| 47 |
+
...
|
| 48 |
+
}
|
| 49 |
+
You may obtain the full information about the paper using the provided paper ids
|
| 50 |
+
with the Semantic Scholar API (https://api.semanticscholar.org/).
|
| 51 |
+
The labels are:
|
| 52 |
+
Method, Background, Result
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
_SOURCE_NAMES = ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class Scicite(datasets.GeneratorBasedBuilder):
|
| 59 |
+
"""This is a dataset for classifying citation intents in academic papers."""
|
| 60 |
+
|
| 61 |
+
VERSION = datasets.Version("1.0.0")
|
| 62 |
+
|
| 63 |
+
def _info(self):
|
| 64 |
+
return datasets.DatasetInfo(
|
| 65 |
+
# This is the description that will appear on the datasets page.
|
| 66 |
+
description=_DESCRIPTION,
|
| 67 |
+
# datasets.features.FeatureConnectors
|
| 68 |
+
features=datasets.Features(
|
| 69 |
+
{
|
| 70 |
+
"string": datasets.Value("string"),
|
| 71 |
+
"sectionName": datasets.Value("string"),
|
| 72 |
+
"label": datasets.features.ClassLabel(names=["method", "background", "result"]),
|
| 73 |
+
"citingPaperId": datasets.Value("string"),
|
| 74 |
+
"citedPaperId": datasets.Value("string"),
|
| 75 |
+
"excerpt_index": datasets.Value("int32"),
|
| 76 |
+
"isKeyCitation": datasets.Value("bool"),
|
| 77 |
+
"label2": datasets.features.ClassLabel(
|
| 78 |
+
names=["supportive", "not_supportive", "cant_determine", "none"]
|
| 79 |
+
),
|
| 80 |
+
"citeEnd": datasets.Value("int64"),
|
| 81 |
+
"citeStart": datasets.Value("int64"),
|
| 82 |
+
"source": datasets.features.ClassLabel(names=_SOURCE_NAMES),
|
| 83 |
+
"label_confidence": datasets.Value("float32"),
|
| 84 |
+
"label2_confidence": datasets.Value("float32"),
|
| 85 |
+
"id": datasets.Value("string"),
|
| 86 |
+
}
|
| 87 |
+
),
|
| 88 |
+
# If there's a common (input, target) tuple from the features,
|
| 89 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 90 |
+
# builder.as_dataset.
|
| 91 |
+
supervised_keys=None,
|
| 92 |
+
# Homepage of the dataset for documentation
|
| 93 |
+
homepage="https://github.com/allenai/scicite",
|
| 94 |
+
citation=_CITATION,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def _split_generators(self, dl_manager):
|
| 98 |
+
"""Returns SplitGenerators."""
|
| 99 |
+
dl_paths = dl_manager.download_and_extract(
|
| 100 |
+
{
|
| 101 |
+
"scicite": "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz",
|
| 102 |
+
}
|
| 103 |
+
)
|
| 104 |
+
path = os.path.join(dl_paths["scicite"], "scicite")
|
| 105 |
+
return [
|
| 106 |
+
datasets.SplitGenerator(
|
| 107 |
+
name=datasets.Split.TRAIN,
|
| 108 |
+
gen_kwargs={"path": os.path.join(path, "train.jsonl")},
|
| 109 |
+
),
|
| 110 |
+
datasets.SplitGenerator(
|
| 111 |
+
name=datasets.Split.VALIDATION,
|
| 112 |
+
gen_kwargs={"path": os.path.join(path, "dev.jsonl")},
|
| 113 |
+
),
|
| 114 |
+
datasets.SplitGenerator(
|
| 115 |
+
name=datasets.Split.TEST,
|
| 116 |
+
gen_kwargs={"path": os.path.join(path, "test.jsonl")},
|
| 117 |
+
),
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
def _generate_examples(self, path=None):
|
| 121 |
+
"""Yields examples."""
|
| 122 |
+
with open(path, encoding="utf-8") as f:
|
| 123 |
+
unique_ids = {}
|
| 124 |
+
for line in f:
|
| 125 |
+
d = json.loads(line)
|
| 126 |
+
unique_id = str(d["unique_id"])
|
| 127 |
+
if unique_id in unique_ids:
|
| 128 |
+
continue
|
| 129 |
+
unique_ids[unique_id] = True
|
| 130 |
+
yield unique_id, {
|
| 131 |
+
"string": d["string"],
|
| 132 |
+
"label": str(d["label"]),
|
| 133 |
+
"sectionName": str(d["sectionName"]),
|
| 134 |
+
"citingPaperId": str(d["citingPaperId"]),
|
| 135 |
+
"citedPaperId": str(d["citedPaperId"]),
|
| 136 |
+
"excerpt_index": int(d["excerpt_index"]),
|
| 137 |
+
"isKeyCitation": bool(d["isKeyCitation"]),
|
| 138 |
+
"label2": str(d.get("label2", "none")),
|
| 139 |
+
"citeEnd": _safe_int(d["citeEnd"]),
|
| 140 |
+
"citeStart": _safe_int(d["citeStart"]),
|
| 141 |
+
"source": str(d["source"]),
|
| 142 |
+
"label_confidence": float(d.get("label_confidence", 0.0)),
|
| 143 |
+
"label2_confidence": float(d.get("label2_confidence", 0.0)),
|
| 144 |
+
"id": str(d["id"]),
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def _safe_int(a):
|
| 149 |
+
try:
|
| 150 |
+
# skip NaNs
|
| 151 |
+
return int(a)
|
| 152 |
+
except ValueError:
|
| 153 |
+
return -1
|