Datasets:
Tasks:
Text Classification
Sub-tasks:
hate-speech-detection
Languages:
English
Size:
100K<n<1M
Tags:
explanation-generation
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Social Bias Frames""" | |
| import csv | |
| import datasets | |
| _CITATION = """\ | |
| @inproceedings{sap2020socialbiasframes, | |
| title={Social Bias Frames: Reasoning about Social and Power Implications of Language}, | |
| author={Sap, Maarten and Gabriel, Saadia and Qin, Lianhui and Jurafsky, Dan and Smith, Noah A and Choi, Yejin}, | |
| year={2020}, | |
| booktitle={ACL}, | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Social Bias Frames is a new way of representing the biases and offensiveness that are implied in language. | |
| For example, these frames are meant to distill the implication that "women (candidates) are less qualified" | |
| behind the statement "we shouldn’t lower our standards to hire more women." | |
| """ | |
| _DATA_URL = "https://homes.cs.washington.edu/~msap/social-bias-frames/SBIC.v2.tgz" | |
| class SocialBiasFrames(datasets.GeneratorBasedBuilder): | |
| """TSocial Bias Frame""" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "whoTarget": datasets.Value("string"), | |
| "intentYN": datasets.Value("string"), | |
| "sexYN": datasets.Value("string"), | |
| "sexReason": datasets.Value("string"), | |
| "offensiveYN": datasets.Value("string"), | |
| "annotatorGender": datasets.Value("string"), | |
| "annotatorMinority": datasets.Value("string"), | |
| "sexPhrase": datasets.Value("string"), | |
| "speakerMinorityYN": datasets.Value("string"), | |
| "WorkerId": datasets.Value("string"), | |
| "HITId": datasets.Value("string"), | |
| "annotatorPolitics": datasets.Value("string"), | |
| "annotatorRace": datasets.Value("string"), | |
| "annotatorAge": datasets.Value("string"), | |
| "post": datasets.Value("string"), | |
| "targetMinority": datasets.Value("string"), | |
| "targetCategory": datasets.Value("string"), | |
| "targetStereotype": datasets.Value("string"), | |
| "dataSource": datasets.Value("string"), | |
| } | |
| ), | |
| # No default supervised_keys (as we have to pass both premise | |
| # and hypothesis as input). | |
| supervised_keys=None, | |
| homepage="https://homes.cs.washington.edu/~msap/social-bias-frames/", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| archive = dl_manager.download(_DATA_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"filepath": "SBIC.v2.tst.csv", "files": dl_manager.iter_archive(archive)}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"filepath": "SBIC.v2.dev.csv", "files": dl_manager.iter_archive(archive)}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"filepath": "SBIC.v2.trn.csv", "files": dl_manager.iter_archive(archive)}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, files): | |
| """This function returns the examples in the raw (text) form.""" | |
| for path, f in files: | |
| if path == filepath: | |
| lines = (line.decode("utf-8") for line in f) | |
| reader = csv.DictReader(lines) | |
| for idx, row in enumerate(reader): | |
| yield idx, row | |
| break | |