--- dataset_info: features: - name: en dtype: string - name: yo dtype: string splits: - name: train num_bytes: 6765615 num_examples: 22626 download_size: 4149995 dataset_size: 6765615 configs: - config_name: default data_files: - split: train path: data/train-* --- # Yoruba-English Translation Dataset A curated parallel corpus for machine translation between English (en) and Yoruba (yo), designed for low-resource machine translation research and applications. ## 📊 Dataset Overview - **Language Pair**: English → Yoruba (en-yo) - **Total Sentence Pairs**: 20,703 - **Quality Threshold**: QE ≥ 0.6 - **Processing Date**: September 22, 2025 - **Repository**: [amanuelbyte/yo-en-translation-dataset](https://huggingface.co/amanuelbyte/yo-en-translation-dataset) ## 🎯 Key Features - **Low-Resource Optimized**: Tailored quality thresholds for Yoruba language characteristics - **Deduplicated**: Extensive deduplication process removes redundant content - **Multi-Domain**: Covers diverse domains including technical, religious, educational, and general content - **Quality Assured**: All sentence pairs meet minimum Quality Estimation score of 0.6 ## 📈 Dataset Statistics ### Data Volume - **Before Deduplication**: 32,796 sentence pairs - **After Deduplication**: 20,703 sentence pairs - **Deduplication Ratio**: 36.9% reduction ### Quality Metrics - **Average QE Score**: 0.68 - **Highest Quality Dataset**: Tatoeba (QE: 0.7137) - **Lowest Quality Dataset**: Ubuntu (QE: 0.6452) ## 📚 Data Sources This dataset combines **20 high-quality sources**: | Source | Dataset | Pairs | QE Score | Domain | |--------|---------|-------|----------|---------| | wikimedia | Wikipedia Articles | 4,773 | 0.7035 | General | | mafand | Mafand Dataset | 3,985 | 0.6951 | General | | mafand-dev | Mafand Development | 3,985 | 0.6951 | General | | mafand-test | Mafand Test Set | 3,985 | 0.6951 | General | | AfriDocMT-health | African Medical Documents | 3,701 | 0.6721 | Medical | | menyo20k_mt-test | Menyo20k Test Set | 3,682 | 0.6947 | General | | menyo20k_mt-train | Menyo20k Training | 4,585 | 0.6997 | General | | menyo20k_mt-dev | Menyo20k Development | 1,432 | 0.6853 | General | | quran_multilingual_parallel | Multilingual Quran | 1,002 | 0.6568 | Religious | | ntrex | News Articles | 602 | 0.6780 | News | | Pontoon-Translations | Mozilla Translations | 553 | 0.6795 | Technical | | smol | Smol Dataset | 153 | 0.6694 | General | | GlobalVoices | Global Voices | 61 | 0.6769 | News | | opus-100 | OPUS-100 Corpus | 59 | 0.6557 | General | | opus-100-dev | OPUS-100 Development | 59 | 0.6557 | General | | opus-100-test | OPUS-100 Test Set | 59 | 0.6557 | General | | GNOME | Software Localization | 59 | 0.6557 | Technical | | Tatoeba | Community Translations | 21 | 0.7137 | General | | Weblate-Translations | Weblate Platform | 33 | 0.7056 | General | | Ubuntu | Ubuntu Localization | 7 | 0.6452 | Technical | ## 🛠️ Processing Pipeline The dataset underwent comprehensive processing optimized for Yoruba: 1. **Rule-based Filtering**: Length constraints, character validation 2. **Semantic Filtering**: Sentence embedding similarity (threshold: 0.7) 3. **Language Detection**: FastText + AfroLID models for accurate language identification 4. **Quality Estimation**: Africomet QE model for translation quality scoring 5. **Sentence-level QE Filtering**: Only pairs with QE ≥ 0.6 retained (optimized for Yoruba) 6. **Deduplication**: 4-stage process removing identical and similar content ### Deduplication Process 1. Remove identical source-target pairs 2. Remove duplicate (source, target) combinations 3. Remove duplicate source sentences 4. Remove duplicate target sentences ## 💾 Dataset Format The dataset is available in Hugging Face `datasets` format with the following structure: ```python from datasets import load_dataset dataset = load_dataset("amanuelbyte/yo-en-translation-dataset") print(dataset) # Dataset structure: # DatasetDict({ # "train": Dataset({ # features: ['en', 'yo'], # num_rows: 20703 # }) # }) ``` ### Columns - `en`: English source text - `yo`: Yoruba target text ## 📖 Usage Examples ### Loading the Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("amanuelbyte/yo-en-translation-dataset") # Access the training split train_data = dataset["train"] # Get a sample sample = train_data[0] print(f"English: {sample['en']}") print(f"Yoruba: {sample['yo']}") ``` ### For Machine Translation Training ```python # Prepare data for training source_texts = train_data["en"] target_texts = train_data["yo"] # Statistics print(f"Dataset size: {len(train_data)}") print(f"Average source length: {sum(len(text.split()) for text in source_texts) / len(source_texts)".1f"}") print(f"Average target length: {sum(len(text.split()) for text in target_texts) / len(target_texts)".1f"}") ``` ## 🎓 Applications This dataset is particularly suitable for: - **Low-Resource MT**: Training models for under-resourced Yoruba language - **Cross-lingual Transfer**: Multilingual NLP tasks involving African languages - **Language Modeling**: Pretraining language models for Yoruba - **Quality Estimation Research**: Studies on QE thresholds for low-resource languages - **Linguistic Studies**: Analysis of Yoruba-English language characteristics ## 🔍 Quality Assessment ### Dataset-Specific Insights - **Optimized QE Threshold**: 0.6 (vs 0.7 for higher-resource languages) - **Quality Distribution**: Reflects the challenges of Yoruba language processing - **Source Diversity**: Combines multiple domains for robust training data - **Deduplication Effectiveness**: 36.9% reduction indicates significant data cleaning ### Quality Metrics Summary - **Top Performing Sources**: Tatoeba, Weblate-Translations, Wikimedia - **Largest Contributors**: Mafand datasets (11,955 pairs total) - **Domain Coverage**: Technical, religious, news, and general content ## 📄 License This dataset is released under [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) license. The individual source datasets maintain their original licenses. ## 🤝 Citation If you use this dataset in your research, please cite: ```bibtex @dataset{yo-en-translation-dataset-2025, title={Yoruba-English Translation Dataset}, author={Amanuel Tewolde}, year={2025}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/amanuelbyte/yo-en-translation-dataset}} } ``` ## 📞 Contact For questions or issues regarding this dataset, please contact: - **Maintainer**: Amanuel Tewolde - **Email**: amanuelbyte@protonmail.com - **Organization**: Hugging Face Community ## 🔗 Related Resources - [AfroLID Model](https://huggingface.co/UBC-NLP/afrolid_1.5) - Language identification - [Africomet QE](https://huggingface.co/masakhane/africomet-qe-stl) - Quality estimation - [Processing Pipeline](https://github.com/amanuelbyte/mt-data-processing) - Source code - [Afrikaans Dataset](https://huggingface.co/amanuelbyte/af-en-translation-dataset) - Related work --- **Note**: This Yoruba dataset uses optimized quality thresholds (QE ≥ 0.6) compared to higher-resource languages, reflecting the challenges and characteristics of low-resource African language processing. The lower threshold ensures sufficient training data while maintaining quality standards appropriate for Yoruba language resources.