Add upload script
Browse files- upload_script.py +385 -0
upload_script.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Taken and adapated from Alan Cooney's
|
| 3 |
+
https://github.com/ai-safety-foundation/sparse_autoencoder/tree/main/sparse_autoencoder.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import subprocess
|
| 7 |
+
from collections.abc import Mapping, Sequence
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import TypedDict
|
| 10 |
+
|
| 11 |
+
from datasets import (
|
| 12 |
+
Dataset,
|
| 13 |
+
DatasetDict,
|
| 14 |
+
VerificationMode,
|
| 15 |
+
load_dataset,
|
| 16 |
+
)
|
| 17 |
+
from huggingface_hub import HfApi
|
| 18 |
+
from jaxtyping import Int
|
| 19 |
+
from pydantic import PositiveInt, validate_call
|
| 20 |
+
from torch import Tensor
|
| 21 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class GenericTextDataBatch(TypedDict):
|
| 25 |
+
"""Generic Text Dataset Batch.
|
| 26 |
+
|
| 27 |
+
Assumes the dataset provides a 'text' field with a list of strings.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
text: list[str]
|
| 31 |
+
meta: list[dict[str, dict[str, str]]] # Optional, depending on the dataset structure.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
TokenizedPrompt = list[int]
|
| 35 |
+
"""A tokenized prompt."""
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class TokenizedPrompts(TypedDict):
|
| 39 |
+
"""Tokenized prompts."""
|
| 40 |
+
|
| 41 |
+
input_ids: list[TokenizedPrompt]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class TorchTokenizedPrompts(TypedDict):
|
| 45 |
+
"""Tokenized prompts prepared for PyTorch."""
|
| 46 |
+
|
| 47 |
+
input_ids: Int[Tensor, "batch pos vocab"]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class TextDataset:
|
| 51 |
+
"""Generic Text Dataset for any text-based dataset from Hugging Face."""
|
| 52 |
+
|
| 53 |
+
tokenizer: PreTrainedTokenizerBase
|
| 54 |
+
|
| 55 |
+
def preprocess(
|
| 56 |
+
self,
|
| 57 |
+
source_batch: GenericTextDataBatch,
|
| 58 |
+
*,
|
| 59 |
+
context_size: int,
|
| 60 |
+
) -> TokenizedPrompts:
|
| 61 |
+
"""Preprocess a batch of prompts.
|
| 62 |
+
|
| 63 |
+
Tokenizes a batch of text data and packs into context_size samples. An eos token is added
|
| 64 |
+
to the end of each document after tokenization.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
source_batch: A batch of source data, including 'text' with a list of strings.
|
| 68 |
+
context_size: Context size for tokenized prompts.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
Tokenized prompts.
|
| 72 |
+
"""
|
| 73 |
+
prompts: list[str] = source_batch["text"]
|
| 74 |
+
|
| 75 |
+
tokenized_prompts = self.tokenizer(prompts, truncation=False, padding=False)
|
| 76 |
+
|
| 77 |
+
all_tokens = []
|
| 78 |
+
for document_tokens in tokenized_prompts[self._dataset_column_name]: # type: ignore
|
| 79 |
+
all_tokens.extend(document_tokens + [self.tokenizer.eos_token_id])
|
| 80 |
+
# Ignore incomplete chunks
|
| 81 |
+
chunks = [
|
| 82 |
+
all_tokens[i : i + context_size]
|
| 83 |
+
for i in range(0, len(all_tokens), context_size)
|
| 84 |
+
if len(all_tokens[i : i + context_size]) == context_size
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
return {"input_ids": chunks}
|
| 88 |
+
|
| 89 |
+
@validate_call(config={"arbitrary_types_allowed": True})
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
dataset_path: str,
|
| 93 |
+
tokenizer: PreTrainedTokenizerBase,
|
| 94 |
+
context_size: PositiveInt = 256,
|
| 95 |
+
load_revision: str = "main",
|
| 96 |
+
dataset_dir: str | None = None,
|
| 97 |
+
dataset_files: str | Sequence[str] | Mapping[str, str | Sequence[str]] | None = None,
|
| 98 |
+
dataset_split: str | None = None,
|
| 99 |
+
dataset_column_name: str = "input_ids",
|
| 100 |
+
n_processes_preprocessing: PositiveInt | None = None,
|
| 101 |
+
preprocess_batch_size: PositiveInt = 1000,
|
| 102 |
+
):
|
| 103 |
+
"""Initialize a generic text dataset from Hugging Face.
|
| 104 |
+
|
| 105 |
+
Args:
|
| 106 |
+
dataset_path: Path to the dataset on Hugging Face (e.g. `'monology/pile-uncopyright'`).
|
| 107 |
+
tokenizer: Tokenizer to process text data.
|
| 108 |
+
context_size: The context size to use when returning a list of tokenized prompts.
|
| 109 |
+
*Towards Monosemanticity: Decomposing Language Models With Dictionary Learning* used
|
| 110 |
+
a context size of 250.
|
| 111 |
+
load_revision: The commit hash or branch name to download from the source dataset.
|
| 112 |
+
dataset_dir: Defining the `data_dir` of the dataset configuration.
|
| 113 |
+
dataset_files: Path(s) to source data file(s).
|
| 114 |
+
dataset_split: Dataset split (e.g., 'train'). If None, process all splits.
|
| 115 |
+
dataset_column_name: The column name for the prompts.
|
| 116 |
+
n_processes_preprocessing: Number of processes to use for preprocessing.
|
| 117 |
+
preprocess_batch_size: Batch size for preprocessing (tokenizing prompts).
|
| 118 |
+
"""
|
| 119 |
+
self.tokenizer = tokenizer
|
| 120 |
+
|
| 121 |
+
self.context_size = context_size
|
| 122 |
+
self._dataset_column_name = dataset_column_name
|
| 123 |
+
|
| 124 |
+
# Load the dataset
|
| 125 |
+
dataset = load_dataset(
|
| 126 |
+
dataset_path,
|
| 127 |
+
revision=load_revision,
|
| 128 |
+
streaming=False, # We need to pre-download the dataset to upload it to the hub.
|
| 129 |
+
split=dataset_split,
|
| 130 |
+
data_dir=dataset_dir,
|
| 131 |
+
data_files=dataset_files,
|
| 132 |
+
verification_mode=VerificationMode.NO_CHECKS, # As it fails when data_files is set
|
| 133 |
+
)
|
| 134 |
+
# If split is not None, will return a Dataset instance. Convert to DatasetDict.
|
| 135 |
+
if isinstance(dataset, Dataset):
|
| 136 |
+
assert dataset_split is not None
|
| 137 |
+
dataset = DatasetDict({dataset_split: dataset})
|
| 138 |
+
assert isinstance(dataset, DatasetDict)
|
| 139 |
+
|
| 140 |
+
for split in dataset:
|
| 141 |
+
print(f"Processing split: {split}")
|
| 142 |
+
# Setup preprocessing (we remove all columns except for input ids)
|
| 143 |
+
remove_columns: list[str] = list(next(iter(dataset[split])).keys()) # type: ignore
|
| 144 |
+
if "input_ids" in remove_columns:
|
| 145 |
+
remove_columns.remove("input_ids")
|
| 146 |
+
|
| 147 |
+
# Tokenize and chunk the prompts
|
| 148 |
+
mapped_dataset = dataset[split].map(
|
| 149 |
+
self.preprocess,
|
| 150 |
+
batched=True,
|
| 151 |
+
batch_size=preprocess_batch_size,
|
| 152 |
+
fn_kwargs={"context_size": context_size},
|
| 153 |
+
remove_columns=remove_columns,
|
| 154 |
+
num_proc=n_processes_preprocessing,
|
| 155 |
+
)
|
| 156 |
+
dataset[split] = mapped_dataset.shuffle()
|
| 157 |
+
|
| 158 |
+
self.dataset = dataset
|
| 159 |
+
|
| 160 |
+
@validate_call
|
| 161 |
+
def push_to_hugging_face_hub(
|
| 162 |
+
self,
|
| 163 |
+
repo_id: str,
|
| 164 |
+
commit_message: str = "Upload preprocessed dataset using sparse_autoencoder.",
|
| 165 |
+
max_shard_size: str = "500MB",
|
| 166 |
+
revision: str = "main",
|
| 167 |
+
*,
|
| 168 |
+
private: bool = False,
|
| 169 |
+
) -> None:
|
| 170 |
+
"""Share preprocessed dataset to Hugging Face hub.
|
| 171 |
+
|
| 172 |
+
Motivation:
|
| 173 |
+
Pre-processing a dataset can be time-consuming, so it is useful to be able to share the
|
| 174 |
+
pre-processed dataset with others. This function allows you to do that by pushing the
|
| 175 |
+
pre-processed dataset to the Hugging Face hub.
|
| 176 |
+
|
| 177 |
+
Warning:
|
| 178 |
+
You must be logged into HuggingFace (e.g with `huggingface-cli login` from the terminal)
|
| 179 |
+
to use this.
|
| 180 |
+
|
| 181 |
+
Warning:
|
| 182 |
+
This will only work if the dataset is not streamed (i.e. if `pre_download=True` when
|
| 183 |
+
initializing the dataset).
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
repo_id: Hugging Face repo ID to save the dataset to (e.g. `username/dataset_name`).
|
| 187 |
+
commit_message: Commit message.
|
| 188 |
+
max_shard_size: Maximum shard size (e.g. `'500MB'`).
|
| 189 |
+
revision: Branch to push to.
|
| 190 |
+
private: Whether to save the dataset privately.
|
| 191 |
+
"""
|
| 192 |
+
self.dataset.push_to_hub(
|
| 193 |
+
repo_id=repo_id,
|
| 194 |
+
commit_message=commit_message,
|
| 195 |
+
max_shard_size=max_shard_size,
|
| 196 |
+
private=private,
|
| 197 |
+
revision=revision,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@dataclass
|
| 202 |
+
class DatasetToPreprocess:
|
| 203 |
+
"""Dataset to preprocess info."""
|
| 204 |
+
|
| 205 |
+
source_path: str
|
| 206 |
+
"""Source path from HF (e.g. `roneneldan/TinyStories`)."""
|
| 207 |
+
|
| 208 |
+
tokenizer_name: str
|
| 209 |
+
"""HF tokenizer name (e.g. `gpt2`)."""
|
| 210 |
+
|
| 211 |
+
load_revision: str = "main"
|
| 212 |
+
"""Commit hash or branch name to download from the source dataset."""
|
| 213 |
+
|
| 214 |
+
data_dir: str | None = None
|
| 215 |
+
"""Data directory to download from the source dataset."""
|
| 216 |
+
|
| 217 |
+
data_files: list[str] | None = None
|
| 218 |
+
"""Data files to download from the source dataset."""
|
| 219 |
+
|
| 220 |
+
hugging_face_username: str = "apollo-research"
|
| 221 |
+
"""HF username for the upload."""
|
| 222 |
+
|
| 223 |
+
private: bool = False
|
| 224 |
+
"""Whether the HF dataset should be private or public."""
|
| 225 |
+
|
| 226 |
+
context_size: int = 2048
|
| 227 |
+
"""Number of tokens in a single sample. gpt2 uses 1024, pythia uses 2048."""
|
| 228 |
+
|
| 229 |
+
split: str | None = None
|
| 230 |
+
"""Dataset split to download from the source dataset. If None, process all splits."""
|
| 231 |
+
|
| 232 |
+
@property
|
| 233 |
+
def source_alias(self) -> str:
|
| 234 |
+
"""Create a source alias for the destination dataset name.
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
The modified source path as source alias.
|
| 238 |
+
"""
|
| 239 |
+
return self.source_path.replace("/", "-")
|
| 240 |
+
|
| 241 |
+
@property
|
| 242 |
+
def tokenizer_alias(self) -> str:
|
| 243 |
+
"""Create a tokenizer alias for the destination dataset name.
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
The modified tokenizer name as tokenizer alias.
|
| 247 |
+
"""
|
| 248 |
+
return self.tokenizer_name.replace("/", "-")
|
| 249 |
+
|
| 250 |
+
@property
|
| 251 |
+
def destination_repo_name(self) -> str:
|
| 252 |
+
"""Destination repo name.
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
The destination repo name.
|
| 256 |
+
"""
|
| 257 |
+
split_str = f"{self.split}-" if self.split else ""
|
| 258 |
+
return f"{self.source_alias}-{split_str}tokenizer-{self.tokenizer_alias}"
|
| 259 |
+
|
| 260 |
+
@property
|
| 261 |
+
def destination_repo_id(self) -> str:
|
| 262 |
+
"""Destination repo ID.
|
| 263 |
+
|
| 264 |
+
Returns:
|
| 265 |
+
The destination repo ID.
|
| 266 |
+
"""
|
| 267 |
+
return f"{self.hugging_face_username}/{self.destination_repo_name}"
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def upload_datasets(datasets_to_preprocess: list[DatasetToPreprocess]) -> None:
|
| 271 |
+
"""Upload datasets to HF.
|
| 272 |
+
|
| 273 |
+
Warning:
|
| 274 |
+
Assumes you have already created the corresponding repos on HF.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
datasets_to_preprocess: List of datasets to preprocess.
|
| 278 |
+
|
| 279 |
+
Raises:
|
| 280 |
+
ValueError: If the repo doesn't exist.
|
| 281 |
+
"""
|
| 282 |
+
repositories_updating = [dataset.destination_repo_id for dataset in datasets_to_preprocess]
|
| 283 |
+
print("Updating repositories:\n" "\n".join(repositories_updating))
|
| 284 |
+
|
| 285 |
+
for dataset in datasets_to_preprocess:
|
| 286 |
+
print("Processing dataset: ", dataset.source_path)
|
| 287 |
+
|
| 288 |
+
# Preprocess
|
| 289 |
+
tokenizer = AutoTokenizer.from_pretrained(dataset.tokenizer_name)
|
| 290 |
+
text_dataset = TextDataset(
|
| 291 |
+
dataset_path=dataset.source_path,
|
| 292 |
+
tokenizer=tokenizer,
|
| 293 |
+
dataset_files=dataset.data_files,
|
| 294 |
+
dataset_dir=dataset.data_dir,
|
| 295 |
+
dataset_split=dataset.split,
|
| 296 |
+
context_size=dataset.context_size,
|
| 297 |
+
load_revision=dataset.load_revision,
|
| 298 |
+
)
|
| 299 |
+
# size_in_bytes and info gives info about the whole dataset regardless of the split index,
|
| 300 |
+
# so we just get the first split.
|
| 301 |
+
split = next(iter(text_dataset.dataset))
|
| 302 |
+
print("Dataset info:")
|
| 303 |
+
print(f"Size: {text_dataset.dataset[split].size_in_bytes / 1e9:.2f} GB") # type: ignore
|
| 304 |
+
print("Info: ", text_dataset.dataset[split].info)
|
| 305 |
+
|
| 306 |
+
# Upload
|
| 307 |
+
text_dataset.push_to_hugging_face_hub(
|
| 308 |
+
repo_id=dataset.destination_repo_id, private=dataset.private
|
| 309 |
+
)
|
| 310 |
+
# Also upload the current file to the repo for reproducibility and transparency
|
| 311 |
+
api = HfApi()
|
| 312 |
+
api.upload_file(
|
| 313 |
+
path_or_fileobj=__file__,
|
| 314 |
+
path_in_repo="upload_script.py",
|
| 315 |
+
repo_id=dataset.destination_repo_id,
|
| 316 |
+
repo_type="dataset",
|
| 317 |
+
commit_message="Add upload script",
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
if __name__ == "__main__":
|
| 322 |
+
# Check that the user is signed in to huggingface-cli
|
| 323 |
+
try:
|
| 324 |
+
result = subprocess.run(
|
| 325 |
+
["huggingface-cli", "whoami"], check=True, capture_output=True, text=True
|
| 326 |
+
)
|
| 327 |
+
if "Not logged in" in result.stdout:
|
| 328 |
+
print("Please sign in to huggingface-cli using `huggingface-cli login`.")
|
| 329 |
+
raise Exception("You are not logged in to huggingface-cli.")
|
| 330 |
+
except subprocess.CalledProcessError:
|
| 331 |
+
print("An error occurred while checking the login status.")
|
| 332 |
+
raise
|
| 333 |
+
|
| 334 |
+
datasets: list[DatasetToPreprocess] = [
|
| 335 |
+
DatasetToPreprocess(
|
| 336 |
+
source_path="roneneldan/TinyStories",
|
| 337 |
+
# Paper says gpt-neo tokenizer, and e.g. EleutherAI/gpt-neo-125M uses the same tokenizer
|
| 338 |
+
# as gpt2. They also suggest using gpt2 in (https://github.com/EleutherAI/gpt-neo).
|
| 339 |
+
tokenizer_name="gpt2",
|
| 340 |
+
hugging_face_username="apollo-research",
|
| 341 |
+
context_size=512,
|
| 342 |
+
),
|
| 343 |
+
DatasetToPreprocess(
|
| 344 |
+
source_path="Skylion007/openwebtext",
|
| 345 |
+
tokenizer_name="gpt2",
|
| 346 |
+
hugging_face_username="apollo-research",
|
| 347 |
+
context_size=1024,
|
| 348 |
+
),
|
| 349 |
+
DatasetToPreprocess(
|
| 350 |
+
source_path="Skylion007/openwebtext",
|
| 351 |
+
tokenizer_name="EleutherAI/gpt-neox-20b",
|
| 352 |
+
hugging_face_username="apollo-research",
|
| 353 |
+
context_size=2048,
|
| 354 |
+
),
|
| 355 |
+
DatasetToPreprocess(
|
| 356 |
+
source_path="monology/pile-uncopyrighted",
|
| 357 |
+
tokenizer_name="gpt2",
|
| 358 |
+
hugging_face_username="apollo-research",
|
| 359 |
+
context_size=1024,
|
| 360 |
+
# Get just the first few (each file is 11GB so this should be enough for a large dataset)
|
| 361 |
+
data_files=[
|
| 362 |
+
"train/00.jsonl.zst",
|
| 363 |
+
"train/01.jsonl.zst",
|
| 364 |
+
"train/02.jsonl.zst",
|
| 365 |
+
"train/03.jsonl.zst",
|
| 366 |
+
"train/04.jsonl.zst",
|
| 367 |
+
],
|
| 368 |
+
),
|
| 369 |
+
DatasetToPreprocess(
|
| 370 |
+
source_path="monology/pile-uncopyrighted",
|
| 371 |
+
tokenizer_name="EleutherAI/gpt-neox-20b",
|
| 372 |
+
hugging_face_username="apollo-research",
|
| 373 |
+
private=False,
|
| 374 |
+
context_size=2048,
|
| 375 |
+
data_files=[
|
| 376 |
+
"train/00.jsonl.zst",
|
| 377 |
+
"train/01.jsonl.zst",
|
| 378 |
+
"train/02.jsonl.zst",
|
| 379 |
+
"train/03.jsonl.zst",
|
| 380 |
+
"train/04.jsonl.zst",
|
| 381 |
+
],
|
| 382 |
+
),
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
upload_datasets(datasets)
|