File size: 9,139 Bytes
af0fb5a b5b4914 af0fb5a b5b4914 af0fb5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
language:
- fr
size_categories:
- 100K<n<1M
task_categories:
- summarization
- image-to-text
- text-generation
tags:
- summarization
- vision
- DeepSeek-OCR
- multilingual
- visual-text-encoding
- random-augmentation
library_name: datasets
license: cc-by-nc-sa-4.0
pretty_name: MLSUM French News Summarization
dataset_info:
features:
- name: text
dtype: string
- name: summary
dtype: string
- name: image
dtype: image
- name: source_dataset
dtype: string
- name: original_split
dtype: string
- name: original_index
dtype: int64
splits:
- name: train
num_bytes: 35360851312
num_examples: 392902
download_size: 34743297549
dataset_size: 35360851312
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# DeepSynth - MLSUM French News Summarization
## Dataset Description
Large-scale French news summarization dataset from major French newspapers.
Enables training multilingual DeepSeek-OCR models with proper Unicode/diacritics handling.
This dataset is part of the **DeepSynth** project, which uses visual text encoding for multilingual summarization with the DeepSeek-OCR vision-language model. Text documents are converted into images and processed through a frozen 380M parameter visual encoder, enabling 20x token compression while preserving document layout and structure.
### Key Features
- **Original High-Quality Images**: Full-resolution images stored once, augmented on-the-fly during training
- **Random Augmentation Pipeline**: Rotation, perspective, color jitter, and resize transforms for better generalization
- **Visual Text Encoding**: 20x compression ratio (1 visual token ≈ 20 text tokens)
- **Document Structure Preservation**: Layout and formatting maintained through image representation
- **Human-Written Summaries**: High-quality reference summaries for each document
- **Deduplication Tracking**: Source dataset and index tracking prevents duplicates
### Dataset Statistics
- **Total Samples**: ~392,000
- **Language(s)**: French
- **Domain**: French news articles
- **Average Document Length**: ~700 tokens
- **Average Summary Length**: ~50 tokens
### Source Dataset
Based on **MLSUM (MultiLingual SUMmarization)** French subset.
- **Original Authors**: Scialom et al. (2020)
- **Paper**: [MLSUM: The Multilingual Summarization Corpus](https://arxiv.org/abs/2004.14900)
- **License**: CC BY-NC-SA 4.0
## Image Augmentation Pipeline
Images are stored at **original resolution** (up to 1600×2200) and augmented during training for better generalization:
### Available Augmentation Transforms
- **Random Rotation**: ±10° rotation for orientation invariance
- **Random Perspective**: 0.1-0.2 distortion to simulate viewing angles
- **Random Resize**: 512-1600px range for multi-scale learning
- **Color Jitter**: Brightness, contrast, saturation adjustments (±20%)
- **Random Horizontal Flip**: Optional (use with caution for text)
All transforms preserve aspect ratio with padding to maintain text readability. This approach:
- **Reduces storage**: 6x less disk space (single image vs 6 resolutions)
- **Increases flexibility**: Any resolution on-the-fly vs pre-computed fixed sizes
- **Improves generalization**: Random transforms prevent overfitting to specific resolutions
## Dataset Structure
### Data Fields
- `text` (string): Original document text
- `summary` (string): Human-written summary
- `image` (PIL.Image): Original full-size rendered document image (up to 1600×2200)
- `source_dataset` (string): Origin dataset name
- `original_split` (string): Source split (train/validation/test)
- `original_index` (int): Original sample index for deduplication
### Data Example
```python
{
'text': 'Le gouvernement français a annoncé de nouvelles mesures...',
'summary': 'Nouvelles mesures gouvernementales contre le changement climatique.',
'image': <PIL.Image>, # Original resolution (up to 1600×2200)
'source_dataset': 'MLSUM (fr)',
'original_split': 'train',
'original_index': 0
}
```
## Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("baconnier/deepsynth-fr")
# Streaming for large datasets
dataset = load_dataset("baconnier/deepsynth-fr", streaming=True)
```
### Training Example with DeepSeek-OCR and Augmentation
```python
from transformers import AutoProcessor, AutoModelForVision2Seq
from datasets import load_dataset
from deepsynth.data.transforms import create_training_transform
# Load model and processor
model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR")
processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR")
# Load dataset
dataset = load_dataset("baconnier/deepsynth-fr")
# Create augmentation pipeline (random rotation, perspective, resize, color jitter)
transform = create_training_transform(
target_size_range=(512, 1600), # Random resize range
rotation_degrees=10, # ±10° rotation
perspective_distortion=0.1, # Perspective transform
brightness_factor=0.2, # ±20% brightness
contrast_factor=0.2, # ±20% contrast
)
# Process sample with augmentation
sample = dataset['train'][0]
augmented_image = transform(sample['image']) # Apply random transforms
inputs = processor(
images=augmented_image,
text=sample['text'],
return_tensors="pt"
)
# Fine-tune decoder only (freeze encoder)
for param in model.encoder.parameters():
param.requires_grad = False
# Training loop with on-the-fly augmentation...
```
## Training Recommendations
### DeepSeek-OCR Fine-Tuning
```python
# Recommended hyperparameters with augmentation
training_args = {
"learning_rate": 2e-5,
"batch_size": 4,
"gradient_accumulation_steps": 4,
"num_epochs": 3,
"mixed_precision": "bf16",
"freeze_encoder": True, # IMPORTANT: Only fine-tune decoder
# Augmentation parameters
"rotation_degrees": 10, # Random rotation ±10°
"perspective_distortion": 0.1, # Perspective transform
"resize_range": (512, 1600), # Random resize 512-1600px
"brightness_factor": 0.2, # ±20% brightness
"contrast_factor": 0.2, # ±20% contrast
}
```
### Expected Performance
- **Baseline (text-to-text)**: ROUGE-1 ~40-42
- **DeepSeek-OCR (visual)**: ROUGE-1 ~44-47 (typical SOTA)
- **Training Time**: ~6-8 hours on A100 (80GB) for full dataset
- **GPU Memory**: ~40GB with batch_size=4, mixed_precision=bf16
## Dataset Creation
This dataset was created using the **DeepSynth** pipeline:
1. **Source Loading**: Original text documents from MLSUM (fr)
2. **Text-to-Image Conversion**: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support)
3. **Original Resolution Storage**: Full-quality images stored once (up to 1600×2200)
4. **Incremental Upload**: Batches of 5,000 samples uploaded to HuggingFace Hub
5. **Deduplication**: Source tracking prevents duplicate samples
**Note**: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions.
### Rendering Specifications
- **Font**: DejaVu Sans 12pt (full Unicode support for multilingual text)
- **Line Wrapping**: 100 characters per line
- **Margin**: 40px
- **Background**: White (255, 255, 255)
- **Text Color**: Black (0, 0, 0)
- **Format**: PNG with lossless compression
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{deepsynth-fr,
title={{DeepSynth MLSUM French News Summarization: Visual Text Encoding with Random Augmentation for Summarization}},
author={Baconnier},
year={2025},
publisher={HuggingFace},
howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-fr}}
}
```
### Source Dataset Citation
```bibtex
@inproceedings{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo},
booktitle={Proceedings of EMNLP},
year={2020}
}
```
## License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
**Note**: This dataset inherits the license from the original source dataset. Please review the source license before commercial use.
## Limitations and Bias
- **French-specific**: Requires French language models
- **Diacritics**: Proper handling of accents (é, è, ê, etc.) critical
- **Regional**: May contain France-specific cultural references
- **News domain**: Limited to journalistic style
## Additional Information
### Dataset Curators
Created by the DeepSynth team as part of multilingual visual summarization research.
### Contact
- **Repository**: [DeepSynth GitHub](https://github.com/bacoco/DeepSynth)
- **Issues**: [GitHub Issues](https://github.com/bacoco/DeepSynth/issues)
### Acknowledgments
- **DeepSeek-OCR**: Visual encoder from DeepSeek AI
- **Source Dataset**: MLSUM (fr)
- **HuggingFace**: Dataset hosting and infrastructure
|