Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 17,269 Bytes
1e05a11
 
95bd71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e05a11
95bd71e
 
 
 
 
 
 
 
 
461c99a
 
 
 
 
 
 
 
014fb2f
 
 
 
 
 
 
 
28cc847
 
 
 
 
 
 
 
2ae7b4b
 
 
 
 
 
 
 
a12a206
 
 
 
 
 
 
 
3482581
 
 
 
 
 
 
 
d4ea85e
 
 
 
 
 
 
 
d6b9dbe
 
 
 
 
 
 
 
ee3e2ad
 
 
 
 
 
 
 
27f38c8
 
 
 
 
 
23041dc
 
 
 
 
 
9787ace
 
 
 
 
 
 
 
77a6a8e
 
 
 
 
 
 
 
769fa74
 
 
 
 
 
 
 
c814137
 
 
 
 
 
 
 
95bd71e
461c99a
95bd71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461c99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
014fb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28cc847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae7b4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4ea85e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b9dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3e2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f38c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23041dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9787ace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77a6a8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769fa74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c814137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e05a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
---
language:
- af
- ar
- de
- en
- es
- ha
- hi
- id
- ig
- jv
- mr
- pcm
- pt
- ro
- ru
- rw
- su
- sv
- sw
- tt
- uk
- vmw
- xh
- yo
- zh
- zu
license: cc-by-4.0
configs:
- config_name: afr
  data_files:
  - split: train
    path: afr/train-*
  - split: dev
    path: afr/dev-*
  - split: test
    path: afr/test-*
- config_name: arq
  data_files:
  - split: train
    path: arq/train-*
  - split: dev
    path: arq/dev-*
  - split: test
    path: arq/test-*
- config_name: ary
  data_files:
  - split: train
    path: ary/train-*
  - split: dev
    path: ary/dev-*
  - split: test
    path: ary/test-*
- config_name: chn
  data_files:
  - split: train
    path: chn/train-*
  - split: dev
    path: chn/dev-*
  - split: test
    path: chn/test-*
- config_name: deu
  data_files:
  - split: train
    path: deu/train-*
  - split: dev
    path: deu/dev-*
  - split: test
    path: deu/test-*
- config_name: eng
  data_files:
  - split: train
    path: eng/train-*
  - split: dev
    path: eng/dev-*
  - split: test
    path: eng/test-*
- config_name: esp
  data_files:
  - split: train
    path: esp/train-*
  - split: dev
    path: esp/dev-*
  - split: test
    path: esp/test-*
- config_name: hau
  data_files:
  - split: train
    path: hau/train-*
  - split: dev
    path: hau/dev-*
  - split: test
    path: hau/test-*
- config_name: hin
  data_files:
  - split: train
    path: hin/train-*
  - split: dev
    path: hin/dev-*
  - split: test
    path: hin/test-*
- config_name: ibo
  data_files:
  - split: train
    path: ibo/train-*
  - split: dev
    path: ibo/dev-*
  - split: test
    path: ibo/test-*
- config_name: ind
  data_files:
  - split: dev
    path: ind/dev-*
  - split: test
    path: ind/test-*
- config_name: jav
  data_files:
  - split: dev
    path: jav/dev-*
  - split: test
    path: jav/test-*
- config_name: kin
  data_files:
  - split: train
    path: kin/train-*
  - split: dev
    path: kin/dev-*
  - split: test
    path: kin/test-*
- config_name: mar
  data_files:
  - split: train
    path: mar/train-*
  - split: dev
    path: mar/dev-*
  - split: test
    path: mar/test-*
- config_name: pcm
  data_files:
  - split: train
    path: pcm/train-*
  - split: dev
    path: pcm/dev-*
  - split: test
    path: pcm/test-*
- config_name: ptbr
  data_files:
  - split: train
    path: ptbr/train-*
  - split: dev
    path: ptbr/dev-*
  - split: test
    path: ptbr/test-*
dataset_info:
- config_name: afr
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 257404
    num_examples: 1222
  - name: dev
    num_bytes: 37574
    num_examples: 196
  - name: test
    num_bytes: 443868
    num_examples: 2130
  download_size: 185339
  dataset_size: 738846
- config_name: arq
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 189788
    num_examples: 901
  - name: dev
    num_bytes: 38340
    num_examples: 200
  - name: test
    num_bytes: 375933
    num_examples: 1804
  download_size: 180591
  dataset_size: 604061
- config_name: ary
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 338711
    num_examples: 1608
  - name: dev
    num_bytes: 102370
    num_examples: 534
  - name: test
    num_bytes: 338423
    num_examples: 1624
  download_size: 267222
  dataset_size: 779504
- config_name: chn
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 556515
    num_examples: 2642
  - name: dev
    num_bytes: 76681
    num_examples: 400
  - name: test
    num_bytes: 1101127
    num_examples: 5284
  download_size: 789776
  dataset_size: 1734323
- config_name: deu
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 548300
    num_examples: 2603
  - name: dev
    num_bytes: 76681
    num_examples: 400
  - name: test
    num_bytes: 1085289
    num_examples: 5208
  download_size: 894088
  dataset_size: 1710270
- config_name: eng
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 583056
    num_examples: 2768
  - name: dev
    num_bytes: 44475
    num_examples: 232
  - name: test
    num_bytes: 1153224
    num_examples: 5534
  download_size: 402232
  dataset_size: 1780755
- config_name: esp
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 420441
    num_examples: 1996
  - name: dev
    num_bytes: 70547
    num_examples: 368
  - name: test
    num_bytes: 706438
    num_examples: 3390
  download_size: 216719
  dataset_size: 1197426
- config_name: hau
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 451826
    num_examples: 2145
  - name: dev
    num_bytes: 136493
    num_examples: 712
  - name: test
    num_bytes: 450120
    num_examples: 2160
  download_size: 258761
  dataset_size: 1038439
- config_name: hin
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 538400
    num_examples: 2556
  - name: dev
    num_bytes: 38340
    num_examples: 200
  - name: test
    num_bytes: 420945
    num_examples: 2020
  download_size: 377557
  dataset_size: 997685
- config_name: ibo
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 606648
    num_examples: 2880
  - name: dev
    num_bytes: 183653
    num_examples: 958
  - name: test
    num_bytes: 601827
    num_examples: 2888
  download_size: 266394
  dataset_size: 1392128
- config_name: ind
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: dev
    num_bytes: 29905
    num_examples: 156
  - name: test
    num_bytes: 177339
    num_examples: 851
  download_size: 77485
  dataset_size: 207244
- config_name: jav
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: dev
    num_bytes: 28947
    num_examples: 151
  - name: test
    num_bytes: 174421
    num_examples: 837
  download_size: 83743
  dataset_size: 203368
- config_name: kin
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 516283
    num_examples: 2451
  - name: dev
    num_bytes: 156047
    num_examples: 814
  - name: test
    num_bytes: 513053
    num_examples: 2462
  download_size: 430821
  dataset_size: 1185383
- config_name: mar
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 508699
    num_examples: 2415
  - name: dev
    num_bytes: 38340
    num_examples: 200
  - name: test
    num_bytes: 416777
    num_examples: 2000
  download_size: 348097
  dataset_size: 963816
- config_name: pcm
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 785272
    num_examples: 3728
  - name: dev
    num_bytes: 237713
    num_examples: 1240
  - name: test
    num_bytes: 779374
    num_examples: 3740
  download_size: 574462
  dataset_size: 1802359
- config_name: ptbr
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: anger
    dtype: int64
  - name: disgust
    dtype: int64
  - name: fear
    dtype: int64
  - name: joy
    dtype: int64
  - name: sadness
    dtype: int64
  - name: surprise
    dtype: int64
  - name: emotions
    list: string
  splits:
  - name: train
    num_bytes: 468888
    num_examples: 2226
  - name: dev
    num_bytes: 76681
    num_examples: 400
  - name: test
    num_bytes: 927747
    num_examples: 4452
  download_size: 455209
  dataset_size: 1473316
---

# BRIGHTER Emotion Categories Dataset

This dataset contains the emotion categories data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.

## Dataset Description

The BRIGHTER Emotion Categories dataset is a comprehensive multi-language, multi-label emotion classification dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages.

- **Total languages**: 28 languages
- **Total examples**: 139595
- **Splits**: train, dev, test

## About BRIGHTER

BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six categorical emotions: anger, disgust, fear, joy, sadness, and surprise.

The dataset contains text in the following languages: Afrikaans, Algerian Arabic, Moroccan Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Hindi, Igbo, Indonesian, Javanese, Kinyarwanda, Marathi, Nigerian Pidgin, Portuguese (Brazil), Portuguese (Mozambique), Romanian, Russian, Sundanese, Swahili, Swedish, Tatar, Ukrainian, Makhuwa, Xhosa, Yoruba, and Zulu.

## Language Configurations

Each language is available as a separate configuration with the following statistics:

| Original Code | ISO Code | Train Examples | Dev Examples | Test Examples | Total |
|---------------|----------|---------------|-------------|--------------|-------|
| afr | af | 1222 | 196 | 2130 | 3548 |
| arq | ar | 901 | 200 | 1804 | 2905 |
| ary | ar | 1608 | 534 | 1624 | 3766 |
| chn | zh | 2642 | 400 | 5284 | 8326 |
| deu | de | 2603 | 400 | 5208 | 8211 |
| eng | en | 2768 | 232 | 5534 | 8534 |
| esp | es | 1996 | 368 | 3390 | 5754 |
| hau | ha | 2145 | 712 | 2160 | 5017 |
| hin | hi | 2556 | 200 | 2020 | 4776 |
| ibo | ig | 2880 | 958 | 2888 | 6726 |
| ind | id | 0 | 156 | 851 | 1007 |
| jav | jv | 0 | 151 | 837 | 988 |
| kin | rw | 2451 | 814 | 2462 | 5727 |
| mar | mr | 2415 | 200 | 2000 | 4615 |
| pcm | pcm | 3728 | 1240 | 3740 | 8708 |
| ptbr | pt | 2226 | 400 | 4452 | 7078 |
| ptmz | pt | 1546 | 514 | 1552 | 3612 |
| ron | ro | 1241 | 246 | 2238 | 3725 |
| rus | ru | 2679 | 398 | 2000 | 5077 |
| sun | su | 924 | 398 | 1852 | 3174 |
| swa | sw | 3307 | 1102 | 3312 | 7721 |
| swe | sv | 1187 | 400 | 2376 | 3963 |
| tat | tt | 1000 | 400 | 2000 | 3400 |
| ukr | uk | 2466 | 498 | 4468 | 7432 |
| vmw | vmw | 1551 | 516 | 1554 | 3621 |
| xho | xh | 0 | 682 | 1594 | 2276 |
| yor | yo | 2992 | 994 | 3000 | 6986 |
| zul | zu | 0 | 875 | 2047 | 2922 |

## Features

- **id**: Unique identifier for each example
- **text**: Text content to classify
- **anger**, **disgust**, **fear**, **joy**, **sadness**, **surprise**: Presence of emotion
- **emotions**: List of emotions present in the text

## Dataset Characteristics

This dataset provides binary labels for emotion presence, making it suitable for multi-label classification tasks. For regression tasks or fine-grained emotion analysis, please see the companion BRIGHTER-emotion-intensities dataset.

## Usage

```python
from datasets import load_dataset

# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng")

# Or load a specific split for a language
eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng", split="train")
```

## Citation

If you use this dataset, please cite the following papers:

```
@misc{muhammad2025brighterbridginggaphumanannotated,
      title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2502.11926},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.11926}, 
}
```

```
@misc{muhammad2025semeval2025task11bridging,
      title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection}, 
      author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
      year={2025},
      eprint={2503.07269},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.07269}, 
}
```

## License
This dataset is licensed under CC-BY 4.0.