Datasets:
nova demo
Browse files- notebooks/nova_demo.ipynb +363 -0
notebooks/nova_demo.ipynb
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"id": "0fsKoLM5sjn_"
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"# Colab Setup Cell\n",
|
| 26 |
+
"# Install necessary packages\n",
|
| 27 |
+
"!pip -q install -U datasets==3.1.0 pillow pyarrow matplotlib tqdm huggingface_hub\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"from pathlib import Path\n",
|
| 30 |
+
"from datasets import load_dataset, Image\n",
|
| 31 |
+
"import matplotlib.pyplot as plt\n",
|
| 32 |
+
"import matplotlib.patches as patches\n",
|
| 33 |
+
"from PIL import Image as PILImage\n",
|
| 34 |
+
"from tqdm.auto import tqdm\n",
|
| 35 |
+
"from huggingface_hub import hf_hub_url, notebook_login, hf_hub_download # Use hf_hub_download\n",
|
| 36 |
+
"import os # Necessary for creating folders\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"# --- HUGGING FACE AUTHENTICATION (Keep this) ---\n",
|
| 39 |
+
"print(\"--- Authenticating with Hugging Face ---\")\n",
|
| 40 |
+
"notebook_login()\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"# --- Configuration ---\n",
|
| 43 |
+
"DATASET_ID = \"c-i-ber/Nova\"\n",
|
| 44 |
+
"SPLIT_NAME = \"train\"\n",
|
| 45 |
+
"PARQUET_FILE_URL = f\"hf://datasets/{DATASET_ID}/data/nova-v1.parquet\"\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"# --- LOCAL FOLDER CONSTANT ---\n",
|
| 48 |
+
"LOCAL_IMAGE_DIR = \"images\" # The folder where images will be saved\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"MAX_BOXES_TO_DRAW = 5\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# --- Visualization Style Constants (Unchanged) ---\n",
|
| 53 |
+
"BOX_COLOR = 'cyan'\n",
|
| 54 |
+
"TEXT_COLOR = 'black'\n",
|
| 55 |
+
"BOX_LABEL_BG_COLOR = 'white'\n",
|
| 56 |
+
"TITLE_FONT_SIZE = 12\n",
|
| 57 |
+
"METADATA_SECTION_TITLE_SIZE = 12\n",
|
| 58 |
+
"METADATA_TEXT_SIZE = 10"
|
| 59 |
+
]
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"cell_type": "code",
|
| 63 |
+
"source": [
|
| 64 |
+
"# --- HUGGING FACE AUTHENTICATION FIX ---\n",
|
| 65 |
+
"from huggingface_hub import notebook_login\n",
|
| 66 |
+
"import os\n",
|
| 67 |
+
"\n",
|
| 68 |
+
"# 1. Log in to Hugging Face\n",
|
| 69 |
+
"print(\"--- Authenticating with Hugging Face ---\")\n",
|
| 70 |
+
"# This command will open an interactive prompt where you paste your token.\n",
|
| 71 |
+
"# You can get a token from: https://huggingface.co/settings/tokens\n",
|
| 72 |
+
"notebook_login()"
|
| 73 |
+
],
|
| 74 |
+
"metadata": {
|
| 75 |
+
"id": "yRAVEjw-28yU"
|
| 76 |
+
},
|
| 77 |
+
"execution_count": null,
|
| 78 |
+
"outputs": []
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"source": [
|
| 83 |
+
"def load_and_prepare_dataset(parquet_url: str) -> \"datasets.Dataset\":\n",
|
| 84 |
+
" \"\"\"\n",
|
| 85 |
+
" Loads the dataset structure (metadata) directly from the remote Parquet file.\n",
|
| 86 |
+
" \"\"\"\n",
|
| 87 |
+
" print(f\"Loading metadata structure from: {parquet_url}\")\n",
|
| 88 |
+
" try:\n",
|
| 89 |
+
" ds = load_dataset(\"parquet\", data_files=parquet_url, split=SPLIT_NAME)\n",
|
| 90 |
+
" except Exception as e:\n",
|
| 91 |
+
" print(f\"\\n🚨 Fatal Error: Could not load Parquet file from URL. Details: {e}\")\n",
|
| 92 |
+
" return None\n",
|
| 93 |
+
"\n",
|
| 94 |
+
" print(f\"\\nDataset loaded successfully. Total examples: {len(ds)}\")\n",
|
| 95 |
+
" if \"bboxes\" in ds.column_names:\n",
|
| 96 |
+
" print(\"✅ SUCCESS: All metadata columns loaded correctly.\")\n",
|
| 97 |
+
" else:\n",
|
| 98 |
+
" print(\"🚨 CRITICAL ERROR: 'bboxes' column is missing.\")\n",
|
| 99 |
+
"\n",
|
| 100 |
+
" return ds\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"def cache_all_images(dataset: \"datasets.Dataset\", dataset_id: str):\n",
|
| 104 |
+
" \"\"\"\n",
|
| 105 |
+
" Downloads all images from the HF Hub to the local folder and saves them as JPEGs.\n",
|
| 106 |
+
" \"\"\"\n",
|
| 107 |
+
" Path(LOCAL_IMAGE_DIR).mkdir(exist_ok=True)\n",
|
| 108 |
+
" print(f\"\\n--- Downloading and Caching All Images to: {LOCAL_IMAGE_DIR}/ ---\")\n",
|
| 109 |
+
"\n",
|
| 110 |
+
" for example in tqdm(dataset, desc=\"Downloading and saving images\", unit=\"img\"):\n",
|
| 111 |
+
" try:\n",
|
| 112 |
+
" # 1. Get the image's remote path and local target path\n",
|
| 113 |
+
" image_url_path = example['image_path']\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" # The filename is the part after the last slash\n",
|
| 116 |
+
" filename = Path(image_url_path).name\n",
|
| 117 |
+
" local_save_path = Path(LOCAL_IMAGE_DIR) / filename\n",
|
| 118 |
+
"\n",
|
| 119 |
+
" # Skip if the file already exists locally\n",
|
| 120 |
+
" if local_save_path.exists():\n",
|
| 121 |
+
" continue\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" # 2. Download the file's absolute path from HF cache\n",
|
| 124 |
+
" # This uses the correct function and full internal path\n",
|
| 125 |
+
" repo_file_path = image_url_path\n",
|
| 126 |
+
" cached_file_path = hf_hub_download(\n",
|
| 127 |
+
" repo_id=dataset_id,\n",
|
| 128 |
+
" filename=repo_file_path,\n",
|
| 129 |
+
" repo_type=\"dataset\"\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
"\n",
|
| 132 |
+
" # 3. Open the downloaded file from the cache and save it to the local folder\n",
|
| 133 |
+
" img = PILImage.open(cached_file_path)\n",
|
| 134 |
+
" img.save(local_save_path)\n",
|
| 135 |
+
"\n",
|
| 136 |
+
" except Exception as e:\n",
|
| 137 |
+
" print(f\"\\nWarning: Could not process image {example.get('filename')}. Error: {e}\")\n",
|
| 138 |
+
"\n",
|
| 139 |
+
" print(\"Caching complete. Demo examples will load instantly from the local folder.\")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"def load_local_image(filename: str) -> PILImage.Image:\n",
|
| 143 |
+
" \"\"\"Loads an image from the local directory using its simple filename.\"\"\"\n",
|
| 144 |
+
" local_path = Path(LOCAL_IMAGE_DIR) / filename\n",
|
| 145 |
+
" return PILImage.open(local_path)\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"\n",
|
| 148 |
+
"# --- Example Selector Functions (Unchanged) ---\n",
|
| 149 |
+
"# ... (has_boxes, get_example_by_filename, find_first_example_with_boxes are here) ...\n",
|
| 150 |
+
"\n",
|
| 151 |
+
"def has_boxes(example: dict) -> bool:\n",
|
| 152 |
+
" bboxes = example.get(\"bboxes\", None)\n",
|
| 153 |
+
" return isinstance(bboxes, list) and len(bboxes) > 0\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"def get_example_by_filename(dataset: \"datasets.Dataset\", filename: str) -> dict:\n",
|
| 156 |
+
" \"\"\"Retrieves an example from the dataset by its 'filename'.\"\"\"\n",
|
| 157 |
+
" for i, ex in tqdm(\n",
|
| 158 |
+
" enumerate(dataset),\n",
|
| 159 |
+
" total=len(dataset),\n",
|
| 160 |
+
" desc=f\"Searching for '{filename}'\",\n",
|
| 161 |
+
" unit=\"ex\",\n",
|
| 162 |
+
" leave=False\n",
|
| 163 |
+
" ):\n",
|
| 164 |
+
" if ex.get(\"filename\") == filename:\n",
|
| 165 |
+
" return dataset[i]\n",
|
| 166 |
+
" raise ValueError(f\"Example with filename '{filename}' not found.\")\n",
|
| 167 |
+
"\n",
|
| 168 |
+
"def find_first_example_with_boxes(dataset: \"datasets.Dataset\") -> dict:\n",
|
| 169 |
+
" \"\"\"Finds the first example in the dataset that contains bounding boxes.\"\"\"\n",
|
| 170 |
+
" print(\"Searching for first example with bounding boxes...\")\n",
|
| 171 |
+
" for ex in tqdm(dataset, desc=\"Finding example with boxes\", unit=\"ex\"):\n",
|
| 172 |
+
" if has_boxes(ex):\n",
|
| 173 |
+
" return ex\n",
|
| 174 |
+
"\n",
|
| 175 |
+
" print(\"Warning: No example with bounding boxes found. Displaying index 0 instead.\")\n",
|
| 176 |
+
" return dataset[0]"
|
| 177 |
+
],
|
| 178 |
+
"metadata": {
|
| 179 |
+
"id": "5u2Ezk2YFh3o"
|
| 180 |
+
},
|
| 181 |
+
"execution_count": null,
|
| 182 |
+
"outputs": []
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"source": [
|
| 187 |
+
"# Execute the loading\n",
|
| 188 |
+
"ds = load_and_prepare_dataset(PARQUET_FILE_URL)\n",
|
| 189 |
+
"\n",
|
| 190 |
+
"if ds is None:\n",
|
| 191 |
+
" raise RuntimeError(\"Dataset loading failed. Cannot proceed with demo.\")\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"# --- STEP 2: CACHE ALL IMAGES ---\n",
|
| 194 |
+
"cache_all_images(ds, DATASET_ID)"
|
| 195 |
+
],
|
| 196 |
+
"metadata": {
|
| 197 |
+
"id": "hPB6_pzXIBup"
|
| 198 |
+
},
|
| 199 |
+
"execution_count": null,
|
| 200 |
+
"outputs": []
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"source": [
|
| 205 |
+
"def display_nova_example(dataset: \"datasets.Dataset\", selector: str | int = None):\n",
|
| 206 |
+
" # --- Selection Logic (Unchanged) ---\n",
|
| 207 |
+
" example = None\n",
|
| 208 |
+
" try:\n",
|
| 209 |
+
" if isinstance(selector, int):\n",
|
| 210 |
+
" if 0 <= selector < len(dataset):\n",
|
| 211 |
+
" example = dataset[selector]\n",
|
| 212 |
+
" else:\n",
|
| 213 |
+
" raise IndexError(f\"Index {selector} out of bounds for dataset of size {len(dataset)}.\")\n",
|
| 214 |
+
" elif isinstance(selector, str):\n",
|
| 215 |
+
" example = get_example_by_filename(dataset, selector)\n",
|
| 216 |
+
" elif selector is None:\n",
|
| 217 |
+
" example = find_first_example_with_boxes(dataset)\n",
|
| 218 |
+
" else:\n",
|
| 219 |
+
" raise TypeError(f\"Selector must be an integer index or a string filename, got {type(selector)}.\")\n",
|
| 220 |
+
"\n",
|
| 221 |
+
" if example is None: return\n",
|
| 222 |
+
"\n",
|
| 223 |
+
" filename = example.get('filename', 'N/A')\n",
|
| 224 |
+
" total_boxes = len(example.get('bboxes', []))\n",
|
| 225 |
+
" print(f\"\\n--- Displaying File: {filename} | Total Boxes: {total_boxes} ---\")\n",
|
| 226 |
+
"\n",
|
| 227 |
+
" except (ValueError, IndexError, TypeError) as e:\n",
|
| 228 |
+
" print(f\"Error selecting example: {e}\")\n",
|
| 229 |
+
" return\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" # --- IMAGE LOADING (FAST, LOCAL) ---\n",
|
| 232 |
+
" try:\n",
|
| 233 |
+
" # Load the image using its filename from the local folder\n",
|
| 234 |
+
" img = load_local_image(filename)\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" except Exception as e:\n",
|
| 237 |
+
" print(f\"\\n🛑 Fatal Error: Image for file {filename} could not be loaded from local path. Error: {e}\")\n",
|
| 238 |
+
" return\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" # --- Visualization Setup (Plotting - Unchanged) ---\n",
|
| 241 |
+
" fig, (ax_img, ax_meta) = plt.subplots(1, 2, figsize=(14, 7), gridspec_kw={'width_ratios': [1, 1]})\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" # Left Subplot: Image and Bounding Boxes\n",
|
| 244 |
+
" ax_img.imshow(img)\n",
|
| 245 |
+
" bboxes = example.get(\"bboxes\", [])\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" img_title = f\"Image: {filename} ({total_boxes} Boxes)\"\n",
|
| 248 |
+
" ax_img.set_title(img_title, fontsize=TITLE_FONT_SIZE, fontweight='bold')\n",
|
| 249 |
+
"\n",
|
| 250 |
+
" # Draw Bounding Boxes\n",
|
| 251 |
+
" for i, b in enumerate(bboxes[:MAX_BOXES_TO_DRAW]):\n",
|
| 252 |
+
" x, y, w, h = b[\"x\"], b[\"y\"], b[\"width\"], b[\"height\"]\n",
|
| 253 |
+
" source = b.get(\"source\", \"N/A\")\n",
|
| 254 |
+
"\n",
|
| 255 |
+
" rect = patches.Rectangle((x, y), w, h,\n",
|
| 256 |
+
" linewidth=2,\n",
|
| 257 |
+
" edgecolor=BOX_COLOR,\n",
|
| 258 |
+
" linestyle='-',\n",
|
| 259 |
+
" fill=False)\n",
|
| 260 |
+
" ax_img.add_patch(rect)\n",
|
| 261 |
+
"\n",
|
| 262 |
+
" ax_img.text(x, y - 5, f\"Source: {source}\",\n",
|
| 263 |
+
" fontsize=8,\n",
|
| 264 |
+
" color=TEXT_COLOR,\n",
|
| 265 |
+
" bbox=dict(facecolor=BOX_LABEL_BG_COLOR, alpha=0.8, edgecolor='none', pad=2))\n",
|
| 266 |
+
"\n",
|
| 267 |
+
" ax_img.axis(\"off\")\n",
|
| 268 |
+
"\n",
|
| 269 |
+
" # Right Subplot: Structured Metadata\n",
|
| 270 |
+
" ax_meta.set_axis_off()\n",
|
| 271 |
+
" ax_meta.set_xlim(0, 1)\n",
|
| 272 |
+
" ax_meta.set_ylim(0, 1)\n",
|
| 273 |
+
"\n",
|
| 274 |
+
" y_pos = 0.95\n",
|
| 275 |
+
" x_pos = 0.05\n",
|
| 276 |
+
" line_height = 0.08\n",
|
| 277 |
+
"\n",
|
| 278 |
+
" ax_meta.text(x_pos, y_pos, \"Metadata Details\", fontsize=METADATA_SECTION_TITLE_SIZE + 2,\n",
|
| 279 |
+
" fontweight='bold', transform=ax_meta.transAxes)\n",
|
| 280 |
+
" y_pos -= line_height * 1.5\n",
|
| 281 |
+
"\n",
|
| 282 |
+
" # Caption\n",
|
| 283 |
+
" caption = example.get(\"caption_text\", \"N/A (No caption available)\")\n",
|
| 284 |
+
" ax_meta.text(x_pos, y_pos, \"Caption:\", fontsize=METADATA_SECTION_TITLE_SIZE,\n",
|
| 285 |
+
" fontweight='bold', transform=ax_meta.transAxes)\n",
|
| 286 |
+
" y_pos -= line_height\n",
|
| 287 |
+
"\n",
|
| 288 |
+
" wrapped_caption = \"\\n\".join([caption[i:i+60] for i in range(0, len(caption), 60)])\n",
|
| 289 |
+
" ax_meta.text(x_pos, y_pos, wrapped_caption, fontsize=METADATA_TEXT_SIZE, transform=ax_meta.transAxes,\n",
|
| 290 |
+
" verticalalignment='top')\n",
|
| 291 |
+
" y_pos -= line_height * (wrapped_caption.count('\\n') + 2)\n",
|
| 292 |
+
"\n",
|
| 293 |
+
" # Clinical and Publication Details\n",
|
| 294 |
+
" meta = example.get(\"meta\", {})\n",
|
| 295 |
+
" ax_meta.text(x_pos, y_pos, \"Clinical & Publication:\", fontsize=METADATA_SECTION_TITLE_SIZE,\n",
|
| 296 |
+
" fontweight='bold', transform=ax_meta.transAxes)\n",
|
| 297 |
+
" y_pos -= line_height\n",
|
| 298 |
+
"\n",
|
| 299 |
+
" details = [\n",
|
| 300 |
+
" (\"Final Diagnosis:\", meta.get('final_diagnosis', 'N/A')),\n",
|
| 301 |
+
" (\"Title:\", meta.get('title', 'N/A')),\n",
|
| 302 |
+
" (\"Publication Date:\", meta.get('publication_date', 'N/A')),\n",
|
| 303 |
+
" (\"Link:\", meta.get('link', 'N/A'))\n",
|
| 304 |
+
" ]\n",
|
| 305 |
+
"\n",
|
| 306 |
+
" for label, value in details:\n",
|
| 307 |
+
" ax_meta.text(x_pos, y_pos, f\"{label:<18} {value}\", fontsize=METADATA_TEXT_SIZE, transform=ax_meta.transAxes)\n",
|
| 308 |
+
" y_pos -= line_height\n",
|
| 309 |
+
"\n",
|
| 310 |
+
" plt.tight_layout()\n",
|
| 311 |
+
" plt.show()"
|
| 312 |
+
],
|
| 313 |
+
"metadata": {
|
| 314 |
+
"id": "-QzYNu9dFtG9"
|
| 315 |
+
},
|
| 316 |
+
"execution_count": null,
|
| 317 |
+
"outputs": []
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"source": [
|
| 322 |
+
"# --- Demo Examples (Instant after initial caching) ---\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"# 1. Default Example: Find the first entry that has bounding boxes\n",
|
| 325 |
+
"print(\"--- DEMO 1: Displaying first example with boxes ---\")\n",
|
| 326 |
+
"display_nova_example(ds)\n",
|
| 327 |
+
"\n",
|
| 328 |
+
"# 2. Select by Integer Index\n",
|
| 329 |
+
"print(\"\\n--- DEMO 2: Select by Index (95) ---\")\n",
|
| 330 |
+
"display_nova_example(ds, selector=543)\n",
|
| 331 |
+
"\n",
|
| 332 |
+
"# 3. Select by String Filename\n",
|
| 333 |
+
"print(\"\\n--- DEMO 3: Select by Filename (Logical ID) ---\")\n",
|
| 334 |
+
"display_nova_example(ds, selector=ds[0]['filename'])"
|
| 335 |
+
],
|
| 336 |
+
"metadata": {
|
| 337 |
+
"id": "6O1rffbKwOxV"
|
| 338 |
+
},
|
| 339 |
+
"execution_count": null,
|
| 340 |
+
"outputs": []
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"cell_type": "code",
|
| 344 |
+
"source": [
|
| 345 |
+
"import os\n"
|
| 346 |
+
],
|
| 347 |
+
"metadata": {
|
| 348 |
+
"id": "zZ8r9w7YFa6Y"
|
| 349 |
+
},
|
| 350 |
+
"execution_count": null,
|
| 351 |
+
"outputs": []
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "code",
|
| 355 |
+
"source": [],
|
| 356 |
+
"metadata": {
|
| 357 |
+
"id": "mPsz_1vZLIFM"
|
| 358 |
+
},
|
| 359 |
+
"execution_count": null,
|
| 360 |
+
"outputs": []
|
| 361 |
+
}
|
| 362 |
+
]
|
| 363 |
+
}
|