Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
Slovenian
Size:
100K - 1M
License:
| """SentiNews: Manually sentiment annotated Slovenian news corpus.""" | |
| import csv | |
| import datasets | |
| _CITATION = """\ | |
| @article{buvcar2018annotated, | |
| title={Annotated news corpora and a lexicon for sentiment analysis in Slovene}, | |
| author={Bu{\v{c}}ar, Jo{\v{z}}e and {\v{Z}}nidar{\v{s}}i{\v{c}}, Martin and Povh, Janez}, | |
| journal={Language Resources and Evaluation}, | |
| volume={52}, | |
| number={3}, | |
| pages={895--919}, | |
| year={2018}, | |
| publisher={Springer} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| SentiNews is a Slovenian sentiment classification dataset, consisting of news articles manually annotated with their | |
| sentiment by between 2 and 6 annotators. The news articles contain political, business, economic and financial content | |
| from the Slovenian news portals 24ur, Dnevnik, Finance, Rtvslo, and Žurnal24. The texts were annotated using the | |
| five-level Lickert scale (1 – very negative, 2 – negative, 3 – neutral, 4 – positive, and 5 – very positive) on three | |
| levels of granularity, i.e. on the document, paragraph, and sentence level. The final sentiment is determined using | |
| the following criterion: negative (if average of scores ≤ 2.4); neutral (if average of scores is between 2.4 and 3.6); | |
| positive (average of annotated scores ≥ 3.6). | |
| """ | |
| _HOMEPAGE = "https://github.com/19Joey85/Sentiment-annotated-news-corpus-and-sentiment-lexicon-in-Slovene/" | |
| _LICENSE = "Creative Commons - Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)" | |
| _URLS = { | |
| "document_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_document-level.txt", | |
| "paragraph_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_paragraph-level.txt", | |
| "sentence_level": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1110/SentiNews_sentence-level.txt" | |
| } | |
| class Sentinews(datasets.GeneratorBasedBuilder): | |
| """SentiNews: Manually sentiment annotated Slovenian news corpus. Version 1.0.""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="document_level", version=VERSION, description="Dataset annotated at document level."), | |
| datasets.BuilderConfig(name="paragraph_level", version=VERSION, description="Dataset annotated at paragraph level."), | |
| datasets.BuilderConfig(name="sentence_level", version=VERSION, description="Dataset annotated at sentence level."), | |
| ] | |
| def _info(self): | |
| _config_features = { | |
| "nid": datasets.Value("uint16"), | |
| "content": datasets.Value("string"), | |
| "sentiment": datasets.Value("string") | |
| } | |
| if self.config.name == "paragraph_level": | |
| _config_features["pid"] = datasets.Value("uint8") | |
| elif self.config.name == "sentence_level": | |
| _config_features["pid"] = datasets.Value("uint8") | |
| _config_features["sid"] = datasets.Value("uint8") | |
| features = datasets.Features(_config_features) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| supervised_keys=("content", "sentiment"), | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| urls = _URLS[self.config.name] | |
| data_file = dl_manager.download_and_extract(urls) | |
| return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": data_file})] | |
| def _generate_examples(self, data_file): | |
| _keys_to_return = ["nid", "content", "sentiment"] | |
| if self.config.name == "paragraph_level": | |
| _keys_to_return.append("pid") | |
| elif self.config.name == "sentence_level": | |
| _keys_to_return.append("pid") | |
| _keys_to_return.append("sid") | |
| with open(data_file, encoding="utf-8") as f: | |
| data = csv.DictReader(f, delimiter="\t") | |
| for idx, row in enumerate(data): | |
| yield idx, {_k: row[_k] for _k in _keys_to_return} | |