Datasets:
License:
| import os | |
| import json | |
| import datasets | |
| from PIL import Image | |
| _DESCRIPTION = """ | |
| The Arxiv Figure Table Database (AFTdb) facilitates the linking of documentary | |
| objects, such as figures and tables, with their captions. This enables a | |
| comprehensive description of document-oriented images (excluding images from | |
| cameras). For the table component, the character structure is preserved in | |
| addition to the image of the table and its caption. This database is ideal | |
| for multimodal processing of documentary images. | |
| """ | |
| _LICENSE = "apache-2.0" | |
| _CITATION = """ | |
| @online{DeAFTdb, | |
| AUTHOR = {Cyrile Delestre}, | |
| URL = {https://huggingface.co/datasets/cmarkea/aftdb}, | |
| YEAR = {2024}, | |
| KEYWORDS = {NLP ; Multimodal} | |
| } | |
| """ | |
| _NB_TAR_FIGURE = [158, 4] # train, test | |
| _NB_TAR_TABLE = [17, 1] # train, test | |
| def extract_files_tar(all_path, data_dir, nb_files): | |
| paths_train = [ | |
| os.path.join(data_dir, f"train-{ii:03d}.tar") | |
| for ii in range(nb_files[0]) | |
| ] | |
| paths_test = [ | |
| os.path.join(data_dir, f"test-{ii:03d}.tar") | |
| for ii in range(nb_files[1]) | |
| ] | |
| all_path['train'] += paths_train | |
| all_path['test'] += paths_test | |
| class AFTConfig(datasets.BuilderConfig): | |
| """Builder Config for AFTdb""" | |
| def __init__(self, nb_files_figure, nb_files_table, **kwargs): | |
| super().__init__(version=datasets.__version__, **kwargs) | |
| self.nb_files_figure = nb_files_figure | |
| self.nb_files_table = nb_files_table | |
| class AFT_Dataset(datasets.GeneratorBasedBuilder): | |
| """Arxiv Figure Table database (AFTdb)""" | |
| BUILDER_CONFIGS = [ | |
| AFTConfig( | |
| name="figure", | |
| description=( | |
| "Dataset containing scientific article figures associated " | |
| "with their caption, summary, and article title." | |
| ), | |
| data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
| nb_files_figure=_NB_TAR_FIGURE, | |
| nb_files_table=None | |
| ), | |
| AFTConfig( | |
| name="table", | |
| description=( | |
| "Dataset containing tables in JPG image format from " | |
| "scientific articles, along with the corresponding textual " | |
| "representation of the table, including its caption, summary, " | |
| "and article title." | |
| ), | |
| data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
| nb_files_figure=None, | |
| nb_files_table=_NB_TAR_TABLE | |
| ), | |
| AFTConfig( | |
| name="figure+table", | |
| description=( | |
| "Dataset containing figure and tables in JPG image format " | |
| "from scientific articles, along with the corresponding " | |
| "textual representation of the table, including its caption, " | |
| "summary, and article title." | |
| ), | |
| data_dir="{type}", # A modiféer sur Huggingface Hub => "./" supprimé | |
| nb_files_figure=_NB_TAR_FIGURE, | |
| nb_files_table=_NB_TAR_TABLE | |
| ) | |
| ] | |
| DEFAULT_CONFIG_NAME = "figure+table" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| 'id': datasets.Value('string'), | |
| 'paper_id': datasets.Value('string'), | |
| 'type': datasets.Value('string'), | |
| 'authors': datasets.Value('string'), | |
| 'categories': datasets.Value('string'), | |
| 'title': { | |
| 'english': datasets.Value('string'), | |
| 'french': datasets.Value('string') | |
| }, | |
| 'summary': { | |
| 'english': datasets.Value('string'), | |
| 'french': datasets.Value('string') | |
| }, | |
| 'caption': { | |
| 'english': datasets.Value('string'), | |
| 'french': datasets.Value('string') | |
| }, | |
| 'image': datasets.Image(), | |
| 'data': datasets.Value('string'), | |
| 'newcommands': datasets.Sequence(datasets.Value('string')) | |
| } | |
| ), | |
| citation=_CITATION, | |
| license=_LICENSE | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager): | |
| all_path = dict(train=[], test=[]) | |
| if self.config.nb_files_figure: | |
| extract_files_tar( | |
| all_path=all_path, | |
| data_dir=self.config.data_dir.format(type='figure'), | |
| nb_files=self.config.nb_files_figure | |
| ) | |
| if self.config.nb_files_table: | |
| extract_files_tar( | |
| all_path=all_path, | |
| data_dir=self.config.data_dir.format(type='table'), | |
| nb_files=self.config.nb_files_table | |
| ) | |
| if dl_manager.is_streaming: | |
| downloaded_files = dl_manager.download(all_path) | |
| downloaded_files['train'] = [ | |
| dl_manager.iter_archive(ii) for ii in downloaded_files['train'] | |
| ] | |
| downloaded_files['test'] = [ | |
| dl_manager.iter_archive(ii) for ii in downloaded_files['test'] | |
| ] | |
| else: | |
| downloaded_files = dl_manager.download_and_extract(all_path) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| 'filepaths': downloaded_files['train'], | |
| 'is_streaming': dl_manager.is_streaming | |
| } | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepaths": downloaded_files['test'], | |
| 'is_streaming': dl_manager.is_streaming | |
| } | |
| ) | |
| ] | |
| def _generate_examples(self, filepaths, is_streaming): | |
| if is_streaming: | |
| _json, _jpg, _id_json, _id_img = False, False, '', '' | |
| for iter_tar in filepaths: | |
| for path, file_obj in iter_tar: | |
| if path.endswith('.json'): | |
| metadata = json.load(file_obj) | |
| _id_json = path.split('.')[0] | |
| _json = True | |
| if path.endswith('.jpg'): | |
| img = Image.open(file_obj) | |
| _id_img = path.split('.')[0] | |
| _jpg = True | |
| if _json and _jpg: | |
| assert _id_json == _id_img | |
| _json, _jpg = False, False | |
| yield metadata['id'], { | |
| 'id': metadata['id'], | |
| 'paper_id': metadata['paper_id'], | |
| 'type': metadata['type'], | |
| 'authors': metadata['authors'], | |
| 'categories': metadata['categories'], | |
| 'title': metadata['title'], | |
| 'summary': metadata['summary'], | |
| 'caption': metadata['caption'], | |
| 'image': img, | |
| 'data': metadata['data'], | |
| 'newcommands': metadata['newcommands'] | |
| } | |
| else: | |
| for path in filepaths: | |
| all_file = os.listdir(path) | |
| all_id_obs = sorted( | |
| set(map(lambda x: x.split('.')[0], all_file)) | |
| ) | |
| for id_obs in all_id_obs: | |
| path_metadata = os.path.join( | |
| path, | |
| f"{id_obs}.metadata.json" | |
| ) | |
| path_image = os.path.join(path, f"{id_obs}.image.jpg") | |
| metadata = json.load(open(path_metadata, 'r')) | |
| img = Image.open(path_image) | |
| yield id_obs, { | |
| 'id': metadata['id'], | |
| 'paper_id': metadata['paper_id'], | |
| 'type': metadata['type'], | |
| 'authors': metadata['authors'], | |
| 'categories': metadata['categories'], | |
| 'title': metadata['title'], | |
| 'summary': metadata['summary'], | |
| 'caption': metadata['caption'], | |
| 'image': img, | |
| 'data': metadata['data'], | |
| 'newcommands': metadata['newcommands'] | |
| } | |