Datasets:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (186d185991cc4daef68f5041da884e2721015dcd)
- Delete loading script (3756a1eaf11cde4759c843a5f4fd09b8fd83f48e)
- README.md +11 -4
- data/test-00000-of-00001.parquet +3 -0
- data/train-00000-of-00001.parquet +3 -0
- re_dial.py +0 -160
README.md
CHANGED
|
@@ -68,13 +68,20 @@ dataset_info:
|
|
| 68 |
dtype: int32
|
| 69 |
splits:
|
| 70 |
- name: train
|
| 71 |
-
num_bytes:
|
| 72 |
num_examples: 10006
|
| 73 |
- name: test
|
| 74 |
-
num_bytes:
|
| 75 |
num_examples: 1342
|
| 76 |
-
download_size:
|
| 77 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
---
|
| 79 |
|
| 80 |
# Dataset Card for ReDial (Recommendation Dialogues)
|
|
|
|
| 68 |
dtype: int32
|
| 69 |
splits:
|
| 70 |
- name: train
|
| 71 |
+
num_bytes: 13490771
|
| 72 |
num_examples: 10006
|
| 73 |
- name: test
|
| 74 |
+
num_bytes: 1731413
|
| 75 |
num_examples: 1342
|
| 76 |
+
download_size: 7449804
|
| 77 |
+
dataset_size: 15222184
|
| 78 |
+
configs:
|
| 79 |
+
- config_name: default
|
| 80 |
+
data_files:
|
| 81 |
+
- split: train
|
| 82 |
+
path: data/train-*
|
| 83 |
+
- split: test
|
| 84 |
+
path: data/test-*
|
| 85 |
---
|
| 86 |
|
| 87 |
# Dataset Card for ReDial (Recommendation Dialogues)
|
data/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2dd52106a66d484df11c10d06b8ca698917e22e79e0748d55124c2d8b0ea8dd0
|
| 3 |
+
size 834986
|
data/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7ff962a8ec261d27be4ea16a909656d5b47f0fd923cdbce93d14208bb8e6b38
|
| 3 |
+
size 6614818
|
re_dial.py
DELETED
|
@@ -1,160 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""Annotated dataset of dialogues where users recommend movies to each other."""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import json
|
| 19 |
-
import os
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
_CITATION = """\
|
| 25 |
-
@inproceedings{li2018conversational,
|
| 26 |
-
title={Towards Deep Conversational Recommendations},
|
| 27 |
-
author={Li, Raymond and Kahou, Samira Ebrahimi and Schulz, Hannes and Michalski, Vincent and Charlin, Laurent and Pal, Chris},
|
| 28 |
-
booktitle={Advances in Neural Information Processing Systems 31 (NIPS 2018)},
|
| 29 |
-
year={2018}
|
| 30 |
-
}
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
_DESCRIPTION = """\
|
| 34 |
-
ReDial (Recommendation Dialogues) is an annotated dataset of dialogues, where users
|
| 35 |
-
recommend movies to each other. The dataset was collected by a team of researchers working at
|
| 36 |
-
Polytechnique Montréal, MILA – Quebec AI Institute, Microsoft Research Montréal, HEC Montreal, and Element AI.
|
| 37 |
-
|
| 38 |
-
The dataset allows research at the intersection of goal-directed dialogue systems
|
| 39 |
-
(such as restaurant recommendation) and free-form (also called “chit-chat”) dialogue systems.
|
| 40 |
-
"""
|
| 41 |
-
|
| 42 |
-
_HOMEPAGE = "https://redialdata.github.io/website/"
|
| 43 |
-
|
| 44 |
-
_LICENSE = "CC BY 4.0 License."
|
| 45 |
-
|
| 46 |
-
_DATA_URL = "https://github.com/ReDialData/website/raw/data/redial_dataset.zip"
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
class ReDial(datasets.GeneratorBasedBuilder):
|
| 50 |
-
"""Annotated dataset of dialogues where users recommend movies to each other."""
|
| 51 |
-
|
| 52 |
-
VERSION = datasets.Version("1.1.0")
|
| 53 |
-
|
| 54 |
-
def _info(self):
|
| 55 |
-
question_features = {
|
| 56 |
-
"movieId": datasets.Value("string"),
|
| 57 |
-
"suggested": datasets.Value("int32"),
|
| 58 |
-
"seen": datasets.Value("int32"),
|
| 59 |
-
"liked": datasets.Value("int32"),
|
| 60 |
-
}
|
| 61 |
-
features = datasets.Features(
|
| 62 |
-
{
|
| 63 |
-
"movieMentions": [
|
| 64 |
-
{
|
| 65 |
-
"movieId": datasets.Value("string"),
|
| 66 |
-
"movieName": datasets.Value("string"),
|
| 67 |
-
},
|
| 68 |
-
],
|
| 69 |
-
"respondentQuestions": [question_features],
|
| 70 |
-
"messages": [
|
| 71 |
-
{
|
| 72 |
-
"timeOffset": datasets.Value("int32"),
|
| 73 |
-
"text": datasets.Value("string"),
|
| 74 |
-
"senderWorkerId": datasets.Value("int32"),
|
| 75 |
-
"messageId": datasets.Value("int32"),
|
| 76 |
-
},
|
| 77 |
-
],
|
| 78 |
-
"conversationId": datasets.Value("int32"),
|
| 79 |
-
"respondentWorkerId": datasets.Value("int32"),
|
| 80 |
-
"initiatorWorkerId": datasets.Value("int32"),
|
| 81 |
-
"initiatorQuestions": [question_features],
|
| 82 |
-
}
|
| 83 |
-
)
|
| 84 |
-
return datasets.DatasetInfo(
|
| 85 |
-
# This is the description that will appear on the datasets page.
|
| 86 |
-
description=_DESCRIPTION,
|
| 87 |
-
# This defines the different columns of the dataset and their types
|
| 88 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 89 |
-
# If there's a common (input, target) tuple from the features,
|
| 90 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 91 |
-
# builder.as_dataset.
|
| 92 |
-
supervised_keys=None,
|
| 93 |
-
# Homepage of the dataset for documentation
|
| 94 |
-
homepage=_HOMEPAGE,
|
| 95 |
-
# License for the dataset if available
|
| 96 |
-
license=_LICENSE,
|
| 97 |
-
# Citation for the dataset
|
| 98 |
-
citation=_CITATION,
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
def _split_generators(self, dl_manager):
|
| 102 |
-
"""Returns SplitGenerators."""
|
| 103 |
-
data_dir = dl_manager.download_and_extract(_DATA_URL)
|
| 104 |
-
|
| 105 |
-
return [
|
| 106 |
-
datasets.SplitGenerator(
|
| 107 |
-
name=datasets.Split.TRAIN,
|
| 108 |
-
# These kwargs will be passed to _generate_examples
|
| 109 |
-
gen_kwargs={
|
| 110 |
-
"filepath": os.path.join(data_dir, "train_data.jsonl"),
|
| 111 |
-
"split": "train",
|
| 112 |
-
},
|
| 113 |
-
),
|
| 114 |
-
datasets.SplitGenerator(
|
| 115 |
-
name=datasets.Split.TEST,
|
| 116 |
-
# These kwargs will be passed to _generate_examples
|
| 117 |
-
gen_kwargs={"filepath": os.path.join(data_dir, "test_data.jsonl"), "split": "test"},
|
| 118 |
-
),
|
| 119 |
-
]
|
| 120 |
-
|
| 121 |
-
def _generate_examples(self, filepath, split):
|
| 122 |
-
"""Yields examples."""
|
| 123 |
-
|
| 124 |
-
with open(filepath, encoding="utf-8") as f:
|
| 125 |
-
examples = f.readlines()
|
| 126 |
-
for id_, row in enumerate(examples):
|
| 127 |
-
data = json.loads(row.strip())
|
| 128 |
-
d = {}
|
| 129 |
-
movieMentions_list = []
|
| 130 |
-
for i in data["movieMentions"]:
|
| 131 |
-
d["movieId"] = i
|
| 132 |
-
d["movieName"] = data["movieMentions"][i]
|
| 133 |
-
movieMentions_list.append(d)
|
| 134 |
-
d = {}
|
| 135 |
-
|
| 136 |
-
respondentQuestions_list = []
|
| 137 |
-
for i in data["respondentQuestions"]:
|
| 138 |
-
d["movieId"] = i
|
| 139 |
-
alpha = data["respondentQuestions"][i]
|
| 140 |
-
z = {**d, **alpha} # merging 2 dictionaries
|
| 141 |
-
respondentQuestions_list.append(z)
|
| 142 |
-
d = {}
|
| 143 |
-
|
| 144 |
-
initiatorQuestions_list = []
|
| 145 |
-
for i in data["initiatorQuestions"]:
|
| 146 |
-
d["movieId"] = i
|
| 147 |
-
alpha = data["initiatorQuestions"][i]
|
| 148 |
-
z = {**d, **alpha} # merging 2 dictionaries
|
| 149 |
-
initiatorQuestions_list.append(z)
|
| 150 |
-
d = {}
|
| 151 |
-
|
| 152 |
-
yield id_, {
|
| 153 |
-
"movieMentions": movieMentions_list,
|
| 154 |
-
"respondentQuestions": respondentQuestions_list,
|
| 155 |
-
"messages": data["messages"],
|
| 156 |
-
"conversationId": data["conversationId"],
|
| 157 |
-
"respondentWorkerId": data["respondentWorkerId"],
|
| 158 |
-
"initiatorWorkerId": data["initiatorWorkerId"],
|
| 159 |
-
"initiatorQuestions": initiatorQuestions_list,
|
| 160 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|