Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Tags:
stylometry
authorship-attribution
literary-analysis
austen
classic-literature
project-gutenberg
License:
File size: 7,753 Bytes
167a42c aa42bec 167a42c aa42bec 167a42c 650e9ad 167a42c aa42bec 167a42c 650e9ad 167a42c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
language: en
license: mit
task_categories:
- text-generation
tags:
- stylometry
- authorship-attribution
- literary-analysis
- austen
- classic-literature
- project-gutenberg
size_categories:
- n<1K
pretty_name: Jane Austen Corpus
---
# ContextLab Jane Austen Corpus
## Dataset Description
This dataset contains works of **Jane Austen** (1775-1817), preprocessed for computational stylometry research. The texts were sourced from [Project Gutenberg](https://www.gutenberg.org/) and cleaned for use in the paper ["A Stylometric Application of Large Language Models"](https://arxiv.org/abs/2510.21958) (Stropkay et al., 2025).
The corpus includes **7 books** by Jane Austen, including Pride and Prejudice, Sense and Sensibility, and Emma. All text has been converted to **lowercase** and cleaned of Project Gutenberg headers, footers, and chapter headings to focus on the author's prose style.
### Quick Stats
- **Books:** 7
- **Total characters:** 4,127,071
- **Total words:** 740,058 (approximate)
- **Average book length:** 589,581 characters
- **Format:** Plain text (.txt files)
- **Language:** English (lowercase)
## Dataset Structure
### Books Included
Each `.txt` file contains the complete text of one book:
| File | Title |
|------|-------|
| `105.txt` | Persuasion |
| `121.txt` | Northanger Abbey |
| `1342.txt` | Pride and Prejudice |
| `141.txt` | Mansfield Park |
| `158.txt` | Emma |
| `161.txt` | Sense and Sensibility |
| `946.txt` | Lady Susan |
### Data Fields
- **text:** Complete book text (lowercase, cleaned)
- **filename:** Project Gutenberg ID
### Data Format
All files are plain UTF-8 text:
- Lowercase characters only
- Punctuation and structure preserved
- Paragraph breaks maintained
- No chapter headings or non-narrative text
## Usage
### Load with `datasets` library
```python
from datasets import load_dataset
# Load entire corpus
corpus = load_dataset("contextlab/austen-corpus")
# Iterate through books
for book in corpus['train']:
print(f"Book length: {len(book['text']):,} characters")
print(book['text'][:200]) # First 200 characters
print()
```
### Load specific file
```python
# Load single book by filename
dataset = load_dataset(
"contextlab/austen-corpus",
data_files="54.txt" # Specific Gutenberg ID
)
text = dataset['train'][0]['text']
print(f"Loaded {len(text):,} characters")
```
### Download files directly
```python
from huggingface_hub import hf_hub_download
# Download one book
file_path = hf_hub_download(
repo_id="contextlab/austen-corpus",
filename="54.txt",
repo_type="dataset"
)
with open(file_path, 'r') as f:
text = f.read()
```
### Use for training language models
```python
from datasets import load_dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
# Load corpus
corpus = load_dataset("contextlab/austen-corpus")
# Combine all books into single text
full_text = " ".join([book['text'] for book in corpus['train']])
# Tokenize
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=1024)
tokenized = corpus.map(tokenize_function, batched=True, remove_columns=['text'])
# Initialize model
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Set up training
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=10,
per_device_train_batch_size=8,
save_steps=1000,
)
# Train
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized['train']
)
trainer.train()
```
### Analyze text statistics
```python
from datasets import load_dataset
import numpy as np
corpus = load_dataset("contextlab/austen-corpus")
# Calculate statistics
lengths = [len(book['text']) for book in corpus['train']]
print(f"Books: {len(lengths)}")
print(f"Total characters: {sum(lengths):,}")
print(f"Mean length: {np.mean(lengths):,.0f} characters")
print(f"Std length: {np.std(lengths):,.0f} characters")
print(f"Min length: {min(lengths):,} characters")
print(f"Max length: {max(lengths):,} characters")
```
## Dataset Creation
### Source Data
All texts sourced from [Project Gutenberg](https://www.gutenberg.org/), a library of over 70,000 free eBooks in the public domain.
**Project Gutenberg Links:**
- Books identified by Gutenberg ID numbers (filenames)
- Example: `54.txt` corresponds to https://www.gutenberg.org/ebooks/54
- All works are in the public domain
### Preprocessing Pipeline
The raw Project Gutenberg texts underwent the following preprocessing:
1. **Header/footer removal:** Project Gutenberg license text and metadata removed
2. **Lowercase conversion:** All text converted to lowercase for stylometry
3. **Chapter heading removal:** Chapter titles and numbering removed
4. **Non-narrative text removal:** Tables of contents, dedications, etc. removed
5. **Encoding normalization:** Converted to UTF-8
6. **Structure preservation:** Paragraph breaks and punctuation maintained
**Why lowercase?** Stylometric analysis focuses on word choice, syntax, and style rather than capitalization patterns. Lowercase normalization removes this variable.
**Preprocessing code:** Available at https://github.com/ContextLab/llm-stylometry
## Considerations for Using This Dataset
### Known Limitations
- **Historical language:** Reflects 19th-century England vocabulary, grammar, and cultural context
- **Lowercase only:** All text converted to lowercase (not suitable for case-sensitive analysis)
- **Incomplete corpus:** May not include all of Jane Austen's writings (only public domain works on Gutenberg)
- **Cleaning artifacts:** Some formatting irregularities may remain from Gutenberg source
- **Public domain only:** Limited to works published before copyright restrictions
### Intended Use Cases
- **Stylometry research:** Authorship attribution, style analysis
- **Language modeling:** Training author-specific models
- **Literary analysis:** Computational study of Jane Austen's writing
- **Historical NLP:** 19th-century England language patterns
- **Educational:** Teaching computational text analysis
### Out-of-Scope Uses
- Case-sensitive text analysis
- Modern language applications
- Factual information retrieval
- Complete scholarly editions (use academic sources)
## Citation
If you use this dataset in your research, please cite:
```bibtex
@article{StroEtal25,
title={A Stylometric Application of Large Language Models},
author={Stropkay, Harrison F. and Chen, Jiayi and Jabelli, Mohammad J. L. and Rockmore, Daniel N. and Manning, Jeremy R.},
journal={arXiv preprint arXiv:2510.21958},
year={2025}
}
```
## Additional Information
### Dataset Curator
[ContextLab](https://www.context-lab.com/), Dartmouth College
### Licensing
MIT License - Free to use with attribution
### Contact
- **Paper & Code:** https://github.com/ContextLab/llm-stylometry
- **Issues:** https://github.com/ContextLab/llm-stylometry/issues
- **Contact:** Jeremy R. Manning ([email protected])
### Related Resources
Explore datasets for all 8 authors in the study:
- [Jane Austen](https://huggingface.co/datasets/contextlab/austen-corpus)
- [L. Frank Baum](https://huggingface.co/datasets/contextlab/baum-corpus)
- [Charles Dickens](https://huggingface.co/datasets/contextlab/dickens-corpus)
- [F. Scott Fitzgerald](https://huggingface.co/datasets/contextlab/fitzgerald-corpus)
- [Herman Melville](https://huggingface.co/datasets/contextlab/melville-corpus)
- [Ruth Plumly Thompson](https://huggingface.co/datasets/contextlab/thompson-corpus)
- [Mark Twain](https://huggingface.co/datasets/contextlab/twain-corpus)
- [H.G. Wells](https://huggingface.co/datasets/contextlab/wells-corpus)
|