File size: 7,753 Bytes
167a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
aa42bec
167a42c
 
aa42bec
167a42c
 
 
650e9ad
167a42c
aa42bec
167a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650e9ad
167a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
language: en
license: mit
task_categories:
- text-generation
tags:
- stylometry
- authorship-attribution
- literary-analysis
- austen
- classic-literature
- project-gutenberg
size_categories:
- n<1K
pretty_name: Jane Austen Corpus
---

# ContextLab Jane Austen Corpus

## Dataset Description

This dataset contains works of **Jane Austen** (1775-1817), preprocessed for computational stylometry research. The texts were sourced from [Project Gutenberg](https://www.gutenberg.org/) and cleaned for use in the paper ["A Stylometric Application of Large Language Models"](https://arxiv.org/abs/2510.21958) (Stropkay et al., 2025).

The corpus includes **7 books** by Jane Austen, including Pride and Prejudice, Sense and Sensibility, and Emma. All text has been converted to **lowercase** and cleaned of Project Gutenberg headers, footers, and chapter headings to focus on the author's prose style.

### Quick Stats

- **Books:** 7
- **Total characters:** 4,127,071
- **Total words:** 740,058 (approximate)
- **Average book length:** 589,581 characters
- **Format:** Plain text (.txt files)
- **Language:** English (lowercase)

## Dataset Structure

### Books Included

Each `.txt` file contains the complete text of one book:

| File | Title |
|------|-------|
| `105.txt` | Persuasion |
| `121.txt` | Northanger Abbey |
| `1342.txt` | Pride and Prejudice |
| `141.txt` | Mansfield Park |
| `158.txt` | Emma |
| `161.txt` | Sense and Sensibility |
| `946.txt` | Lady Susan |


### Data Fields

- **text:** Complete book text (lowercase, cleaned)
- **filename:** Project Gutenberg ID

### Data Format

All files are plain UTF-8 text:
- Lowercase characters only
- Punctuation and structure preserved
- Paragraph breaks maintained
- No chapter headings or non-narrative text

## Usage

### Load with `datasets` library

```python
from datasets import load_dataset

# Load entire corpus
corpus = load_dataset("contextlab/austen-corpus")

# Iterate through books
for book in corpus['train']:
    print(f"Book length: {len(book['text']):,} characters")
    print(book['text'][:200])  # First 200 characters
    print()
```

### Load specific file

```python
# Load single book by filename
dataset = load_dataset(
    "contextlab/austen-corpus",
    data_files="54.txt"  # Specific Gutenberg ID
)

text = dataset['train'][0]['text']
print(f"Loaded {len(text):,} characters")
```

### Download files directly

```python
from huggingface_hub import hf_hub_download

# Download one book
file_path = hf_hub_download(
    repo_id="contextlab/austen-corpus",
    filename="54.txt",
    repo_type="dataset"
)

with open(file_path, 'r') as f:
    text = f.read()
```

### Use for training language models

```python
from datasets import load_dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments

# Load corpus
corpus = load_dataset("contextlab/austen-corpus")

# Combine all books into single text
full_text = " ".join([book['text'] for book in corpus['train']])

# Tokenize
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

def tokenize_function(examples):
    return tokenizer(examples['text'], truncation=True, max_length=1024)

tokenized = corpus.map(tokenize_function, batched=True, remove_columns=['text'])

# Initialize model
model = GPT2LMHeadModel.from_pretrained("gpt2")

# Set up training
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=10,
    per_device_train_batch_size=8,
    save_steps=1000,
)

# Train
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized['train']
)

trainer.train()
```

### Analyze text statistics

```python
from datasets import load_dataset
import numpy as np

corpus = load_dataset("contextlab/austen-corpus")

# Calculate statistics
lengths = [len(book['text']) for book in corpus['train']]

print(f"Books: {len(lengths)}")
print(f"Total characters: {sum(lengths):,}")
print(f"Mean length: {np.mean(lengths):,.0f} characters")
print(f"Std length: {np.std(lengths):,.0f} characters")
print(f"Min length: {min(lengths):,} characters")
print(f"Max length: {max(lengths):,} characters")
```

## Dataset Creation

### Source Data

All texts sourced from [Project Gutenberg](https://www.gutenberg.org/), a library of over 70,000 free eBooks in the public domain.

**Project Gutenberg Links:**
- Books identified by Gutenberg ID numbers (filenames)
- Example: `54.txt` corresponds to https://www.gutenberg.org/ebooks/54
- All works are in the public domain

### Preprocessing Pipeline

The raw Project Gutenberg texts underwent the following preprocessing:

1. **Header/footer removal:** Project Gutenberg license text and metadata removed
2. **Lowercase conversion:** All text converted to lowercase for stylometry
3. **Chapter heading removal:** Chapter titles and numbering removed
4. **Non-narrative text removal:** Tables of contents, dedications, etc. removed
5. **Encoding normalization:** Converted to UTF-8
6. **Structure preservation:** Paragraph breaks and punctuation maintained

**Why lowercase?** Stylometric analysis focuses on word choice, syntax, and style rather than capitalization patterns. Lowercase normalization removes this variable.

**Preprocessing code:** Available at https://github.com/ContextLab/llm-stylometry

## Considerations for Using This Dataset

### Known Limitations

- **Historical language:** Reflects 19th-century England vocabulary, grammar, and cultural context
- **Lowercase only:** All text converted to lowercase (not suitable for case-sensitive analysis)
- **Incomplete corpus:** May not include all of Jane Austen's writings (only public domain works on Gutenberg)
- **Cleaning artifacts:** Some formatting irregularities may remain from Gutenberg source
- **Public domain only:** Limited to works published before copyright restrictions

### Intended Use Cases

- **Stylometry research:** Authorship attribution, style analysis
- **Language modeling:** Training author-specific models
- **Literary analysis:** Computational study of Jane Austen's writing
- **Historical NLP:** 19th-century England language patterns
- **Educational:** Teaching computational text analysis

### Out-of-Scope Uses

- Case-sensitive text analysis
- Modern language applications
- Factual information retrieval
- Complete scholarly editions (use academic sources)

## Citation

If you use this dataset in your research, please cite:

```bibtex
@article{StroEtal25,
  title={A Stylometric Application of Large Language Models},
  author={Stropkay, Harrison F. and Chen, Jiayi and Jabelli, Mohammad J. L. and Rockmore, Daniel N. and Manning, Jeremy R.},
  journal={arXiv preprint arXiv:2510.21958},
  year={2025}
}
```

## Additional Information

### Dataset Curator

[ContextLab](https://www.context-lab.com/), Dartmouth College

### Licensing

MIT License - Free to use with attribution

### Contact

- **Paper & Code:** https://github.com/ContextLab/llm-stylometry
- **Issues:** https://github.com/ContextLab/llm-stylometry/issues
- **Contact:** Jeremy R. Manning ([email protected])

### Related Resources

Explore datasets for all 8 authors in the study:
- [Jane Austen](https://huggingface.co/datasets/contextlab/austen-corpus)
- [L. Frank Baum](https://huggingface.co/datasets/contextlab/baum-corpus)
- [Charles Dickens](https://huggingface.co/datasets/contextlab/dickens-corpus)
- [F. Scott Fitzgerald](https://huggingface.co/datasets/contextlab/fitzgerald-corpus)
- [Herman Melville](https://huggingface.co/datasets/contextlab/melville-corpus)
- [Ruth Plumly Thompson](https://huggingface.co/datasets/contextlab/thompson-corpus)
- [Mark Twain](https://huggingface.co/datasets/contextlab/twain-corpus)
- [H.G. Wells](https://huggingface.co/datasets/contextlab/wells-corpus)