| import datasets | |
| import pandas as pd | |
| import numpy as np | |
| logger = datasets.logging.get_logger(__name__) | |
| _DATA_PATH = "https://huggingface.co/datasets/conversy/clustering_files/resolve/main/dataset.parquet" | |
| class ClusteringFilesConfig(datasets.BuilderConfig): | |
| """BuilderConfig for Conversy Benchmark.""" | |
| def __init__(self, name, version, **kwargs): | |
| """BuilderConfig for Conversy Benchmark. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| self.name = name | |
| self.version = version | |
| self.features = kwargs.pop("features", None) | |
| self.description = kwargs.pop("description", None) | |
| self.data_url = kwargs.pop("data_url", None) | |
| self.nb_data_shards = kwargs.pop("nb_data_shards", None) | |
| super(ClusteringFilesConfig, self).__init__( | |
| name=name, | |
| version=version, | |
| **kwargs | |
| ) | |
| class ClusteringFiles(datasets.GeneratorBasedBuilder): | |
| """Conversy benchmark""" | |
| VERSION = datasets.Version("1.0.0") | |
| BUILDER_CONFIGS = [ | |
| ClusteringFilesConfig( | |
| name="ClusteringFiles", | |
| version=VERSION, | |
| description="Conversy Benchmark for ML models evaluation", | |
| features=["filename", "segments"], | |
| data_url=_DATA_PATH, | |
| nb_data_shards=1) | |
| ] | |
| def _info(self): | |
| description = ( | |
| "Voice Print Clustering Benchmark" | |
| ) | |
| features = datasets.Features( | |
| { | |
| "filename": datasets.Value("string"), | |
| "segments": [ | |
| { | |
| "segment_id": datasets.Value("string"), | |
| "speaker": datasets.Value("string"), | |
| "duration": datasets.Value("float32"), | |
| "segment_clean": datasets.Value("bool"), | |
| "start": datasets.Value("float32"), | |
| "end": datasets.Value("float32"), | |
| "readable_start": datasets.Value("string"), | |
| "readable_end": datasets.Value("string"), | |
| "vp": datasets.Sequence(datasets.Value("float32")), | |
| } | |
| ] | |
| }) | |
| return datasets.DatasetInfo( | |
| description=description, | |
| features=features, | |
| supervised_keys=None, | |
| version=self.config.version | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| data_url = self.config.data_url | |
| downloaded_file = dl_manager.download_and_extract(data_url) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"file_path": downloaded_file}, | |
| ), | |
| ] | |
| def _generate_examples(self, file_path): | |
| """Yields examples.""" | |
| df = pd.read_parquet(file_path) | |
| files = {} | |
| for idx, row in df.iterrows(): | |
| if row["filename"] not in files: | |
| files[row["filename"]] = { | |
| "filename": row["filename"], | |
| "segments": [] | |
| } | |
| files[row["filename"]]["segments"].append({ | |
| "segment_id": row["segment_id"], | |
| "speaker": row.get("speaker", 'unknown'), | |
| "duration": row["duration"], | |
| "segment_clean": row.get("segment_clean", True), | |
| "start": row['start'], | |
| "end": row['end'], | |
| "readable_start": row['readable_start'], | |
| "readable_end": row['readable_end'], | |
| "vp": row["vp"] | |
| }) | |
| for idx, file_data in enumerate(files.values()): | |
| for segment in file_data["segments"]: | |
| segment["vp"] = segment["vp"].tolist() | |
| yield idx, file_data |