--- tags: - ocr - document-processing - dots-ocr - multilingual - markdown - uv-script - generated --- # Document OCR using dots.ocr This dataset contains OCR results from images in [biglam/bpl-card-catalog](https://huggingface.co/datasets/biglam/bpl-card-catalog) using DoTS.ocr, a compact 1.7B multilingual model. ## Processing Details - **Source Dataset**: [biglam/bpl-card-catalog](https://huggingface.co/datasets/biglam/bpl-card-catalog) - **Model**: [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) - **Number of Samples**: 5,000 - **Processing Time**: 32.7 min - **Processing Date**: 2025-10-07 15:21 UTC ### Configuration - **Image Column**: `image` - **Output Column**: `markdown` - **Dataset Split**: `train` - **Batch Size**: 128 - **Prompt Mode**: layout-all - **Max Model Length**: 8,192 tokens - **Max Output Tokens**: 8,192 - **GPU Memory Utilization**: 80.0% ## Model Information DoTS.ocr is a compact multilingual document parsing model that excels at: - 🌍 **100+ Languages** - Multilingual document support - 📊 **Table extraction** - Structured data recognition - 📐 **Formulas** - Mathematical notation preservation - 📝 **Layout-aware** - Reading order and structure preservation - ⚡ **Fast inference** - 2-3x faster than native HF with vLLM - 🎯 **Compact** - Only 1.7B parameters ## Dataset Structure The dataset contains all original columns plus: - `markdown`: The extracted text in markdown format - `inference_info`: JSON list tracking all OCR models applied to this dataset ## Usage ```python from datasets import load_dataset import json # Load the dataset dataset = load_dataset("{output_dataset_id}", split="train") # Access the markdown text for example in dataset: print(example["markdown"]) break # View all OCR models applied to this dataset inference_info = json.loads(dataset[0]["inference_info"]) for info in inference_info: print(f"Column: {info['column_name']} - Model: {info['model_id']}") ``` ## Reproduction This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DoTS OCR script: ```bash uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \ biglam/bpl-card-catalog \ \ --image-column image \ --batch-size 128 \ --prompt-mode layout-all \ --max-model-len 8192 \ --max-tokens 8192 \ --gpu-memory-utilization 0.8 ``` ## Performance - **Processing Speed**: ~2.5 images/second - **GPU Configuration**: vLLM with 80% GPU memory utilization Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)