ego4d dataset download
Browse files- .gitignore +3 -3
- README.md +6 -1
- check_dataloader.py +12 -18
- dataloaders/egoloader.py +137 -0
- dataloaders/lvosdataloader.py +48 -124
- dataloaders/mosedataloader.py +117 -56
- ego4d/install_ego4d.sh +30 -0
- ego4d/process_ego4d_videos.py +5 -5
- ego4d/video_uids.txt +1 -1
.gitignore
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
lvos/frames/
|
| 2 |
ego4d/frames/
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
| 1 |
lvos/frames/
|
| 2 |
ego4d/frames/
|
| 3 |
+
|
| 4 |
+
*.pyc
|
| 5 |
+
__pycache__/
|
README.md
CHANGED
|
@@ -26,10 +26,15 @@ bash lvos/install_lvos.sh
|
|
| 26 |
|
| 27 |
3. Next, install the Ego4D portion of the dataset. Note that you have need access to obtain access to Ego4D data. License requests can take a few hours to a few days, and can be obtained here: https://ego4d-data.org/docs/start-here/
|
| 28 |
|
|
|
|
| 29 |
```
|
| 30 |
-
|
| 31 |
```
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
We provide a dataloader script:
|
| 34 |
```
|
| 35 |
python check_dataloader.py
|
|
|
|
| 26 |
|
| 27 |
3. Next, install the Ego4D portion of the dataset. Note that you have need access to obtain access to Ego4D data. License requests can take a few hours to a few days, and can be obtained here: https://ego4d-data.org/docs/start-here/
|
| 28 |
|
| 29 |
+
Make sure that you have the ego4d CLI installed by running:
|
| 30 |
```
|
| 31 |
+
pip install ego4d
|
| 32 |
```
|
| 33 |
|
| 34 |
+
```
|
| 35 |
+
bash ego4d/install_ego4d.sh
|
| 36 |
+
```
|
| 37 |
+
## loading data:
|
| 38 |
We provide a dataloader script:
|
| 39 |
```
|
| 40 |
python check_dataloader.py
|
check_dataloader.py
CHANGED
|
@@ -2,44 +2,38 @@ import os
|
|
| 2 |
|
| 3 |
from dataloaders.mosedataloader import MoseTrackDataLoader
|
| 4 |
from dataloaders.lvosdataloader import LVOSTrackDataLoader
|
| 5 |
-
|
| 6 |
-
# from dataloaders.ego4ddataloader import Ego4DTrackDataLoader
|
| 7 |
|
| 8 |
data_root = "/data/ilona/datasets/itto_release/itto"
|
| 9 |
|
| 10 |
-
for dataset_type in ["mose", "lvos"]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
if dataset_type == "mose":
|
| 12 |
print("checking MOSE dataset portion")
|
| 13 |
-
video_id_list = os.listdir(
|
| 14 |
-
os.path.join(data_root, dataset_type, "frames")
|
| 15 |
-
)
|
| 16 |
loader = MoseTrackDataLoader(
|
| 17 |
video_ids=video_id_list,
|
| 18 |
-
annotation_dir=
|
| 19 |
-
video_dir=
|
| 20 |
device="cpu",
|
| 21 |
)
|
| 22 |
elif dataset_type == "lvos":
|
| 23 |
print("checking LVOS dataset portion")
|
| 24 |
-
video_id_list = os.listdir(
|
| 25 |
-
os.path.join(data_root, dataset_type, "frames")
|
| 26 |
-
)
|
| 27 |
loader = LVOSTrackDataLoader(
|
| 28 |
video_ids=video_id_list,
|
| 29 |
-
annotation_dir=
|
| 30 |
-
video_dir=
|
| 31 |
device="cpu",
|
| 32 |
)
|
| 33 |
|
| 34 |
elif dataset_type == "ego4d":
|
| 35 |
print("checking EGO4D dataset portion")
|
| 36 |
-
video_id_list = os.listdir(
|
| 37 |
-
"/data/ilona/code/tracking-benchmark-dataset/model_eval_scripts/tool_annotations/ego4d_tool_annotations/"
|
| 38 |
-
)
|
| 39 |
loader = Ego4DTrackDataLoader(
|
| 40 |
video_ids=video_id_list,
|
| 41 |
-
annotation_dir=
|
| 42 |
-
video_dir=
|
| 43 |
device="cpu",
|
| 44 |
)
|
| 45 |
|
|
|
|
| 2 |
|
| 3 |
from dataloaders.mosedataloader import MoseTrackDataLoader
|
| 4 |
from dataloaders.lvosdataloader import LVOSTrackDataLoader
|
| 5 |
+
from dataloaders.egoloader import Ego4DTrackDataLoader
|
|
|
|
| 6 |
|
| 7 |
data_root = "/data/ilona/datasets/itto_release/itto"
|
| 8 |
|
| 9 |
+
for dataset_type in ["ego4d", "mose", "lvos"]:
|
| 10 |
+
annotation_dir = os.path.join(data_root, dataset_type, "annotations")
|
| 11 |
+
video_id_list = os.listdir(os.path.join(data_root, dataset_type, "frames"))
|
| 12 |
+
video_dir = os.path.join(data_root, dataset_type, "frames")
|
| 13 |
+
|
| 14 |
if dataset_type == "mose":
|
| 15 |
print("checking MOSE dataset portion")
|
|
|
|
|
|
|
|
|
|
| 16 |
loader = MoseTrackDataLoader(
|
| 17 |
video_ids=video_id_list,
|
| 18 |
+
annotation_dir=annotation_dir,
|
| 19 |
+
video_dir=video_dir,
|
| 20 |
device="cpu",
|
| 21 |
)
|
| 22 |
elif dataset_type == "lvos":
|
| 23 |
print("checking LVOS dataset portion")
|
|
|
|
|
|
|
|
|
|
| 24 |
loader = LVOSTrackDataLoader(
|
| 25 |
video_ids=video_id_list,
|
| 26 |
+
annotation_dir=annotation_dir,
|
| 27 |
+
video_dir=video_dir,
|
| 28 |
device="cpu",
|
| 29 |
)
|
| 30 |
|
| 31 |
elif dataset_type == "ego4d":
|
| 32 |
print("checking EGO4D dataset portion")
|
|
|
|
|
|
|
|
|
|
| 33 |
loader = Ego4DTrackDataLoader(
|
| 34 |
video_ids=video_id_list,
|
| 35 |
+
annotation_dir=annotation_dir,
|
| 36 |
+
video_dir=video_dir,
|
| 37 |
device="cpu",
|
| 38 |
)
|
| 39 |
|
dataloaders/egoloader.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .mosedataloader import MoseTrackDataLoader, load_mose_video
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import List
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import sys
|
| 8 |
+
import pdb
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Ego4DTrackDataLoader(MoseTrackDataLoader):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
video_ids: List[str],
|
| 15 |
+
annotation_dir: str,
|
| 16 |
+
video_dir: str,
|
| 17 |
+
device: str = "cuda:0",
|
| 18 |
+
):
|
| 19 |
+
super().__init__(video_ids, annotation_dir, video_dir, device)
|
| 20 |
+
|
| 21 |
+
def _create_queries(
|
| 22 |
+
self, tracks: torch.Tensor, gt_vis: torch.Tensor
|
| 23 |
+
) -> torch.Tensor:
|
| 24 |
+
B, N, T, _ = tracks.shape
|
| 25 |
+
|
| 26 |
+
# Find the first frame where visibility is True
|
| 27 |
+
first_visible_mask = gt_vis.bool()
|
| 28 |
+
|
| 29 |
+
query_frames = torch.zeros((B, N), dtype=torch.long, device=self.device)
|
| 30 |
+
|
| 31 |
+
for b in range(B):
|
| 32 |
+
for n in range(N):
|
| 33 |
+
visible_indices = torch.nonzero(
|
| 34 |
+
first_visible_mask[b, n], as_tuple=False
|
| 35 |
+
)
|
| 36 |
+
if visible_indices.numel() > 0:
|
| 37 |
+
query_frames[b, n] = visible_indices[0].item()
|
| 38 |
+
else:
|
| 39 |
+
query_frames[b, n] = 0 # fallback
|
| 40 |
+
|
| 41 |
+
query_coords = tracks[
|
| 42 |
+
torch.arange(B)[:, None], torch.arange(N)[None, :], query_frames
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
return torch.stack(
|
| 46 |
+
[
|
| 47 |
+
query_frames.float(),
|
| 48 |
+
query_coords[:, :, 0],
|
| 49 |
+
query_coords[:, :, 1],
|
| 50 |
+
],
|
| 51 |
+
dim=2,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def get(self, video_id: str):
|
| 55 |
+
if video_id not in self.videos:
|
| 56 |
+
grad_file = os.path.join(
|
| 57 |
+
self.annotation_dir, f"{video_id}/{video_id}_gradient.npy"
|
| 58 |
+
)
|
| 59 |
+
rand_file = os.path.join(
|
| 60 |
+
self.annotation_dir, f"{video_id}/{video_id}_random.npy"
|
| 61 |
+
)
|
| 62 |
+
bcknd_file = os.path.join(
|
| 63 |
+
self.annotation_dir, f"{video_id}/{video_id}_background.npy"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
use_bcknd, use_rand, use_grad = True, True, True
|
| 67 |
+
if os.path.exists(bcknd_file):
|
| 68 |
+
bcknd_annots = self._load_annotations(bcknd_file) # N1, T, 4
|
| 69 |
+
_, T, _ = bcknd_annots.shape
|
| 70 |
+
else:
|
| 71 |
+
use_bcknd = False
|
| 72 |
+
print(f"no background file for {video_id} found !!")
|
| 73 |
+
|
| 74 |
+
if os.path.exists(rand_file):
|
| 75 |
+
rand_annots = self._load_annotations(rand_file) # N2, T, 4
|
| 76 |
+
_, T, _ = rand_annots.shape
|
| 77 |
+
else:
|
| 78 |
+
print(f"no random queries file for {video_id} found !!")
|
| 79 |
+
use_rand = False
|
| 80 |
+
|
| 81 |
+
if os.path.exists(grad_file):
|
| 82 |
+
grad_annots = self._load_annotations(grad_file) # N3, T, 4
|
| 83 |
+
_, T, _ = grad_annots.shape
|
| 84 |
+
else:
|
| 85 |
+
use_grad = False
|
| 86 |
+
|
| 87 |
+
# creates empty tensors if those files aren't used
|
| 88 |
+
if not use_bcknd:
|
| 89 |
+
bcknd_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 90 |
+
if not use_rand:
|
| 91 |
+
rand_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 92 |
+
if not use_grad:
|
| 93 |
+
grad_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 94 |
+
|
| 95 |
+
grad_tracks = grad_annots[:, :, :2].unsqueeze(0)
|
| 96 |
+
rand_tracks = rand_annots[:, :, :2].unsqueeze(0)
|
| 97 |
+
bcknd_tracks = bcknd_annots[:, :, :2].unsqueeze(0)
|
| 98 |
+
|
| 99 |
+
grad_vis = grad_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 100 |
+
rand_vis = rand_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 101 |
+
bcknd_vis = bcknd_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 102 |
+
|
| 103 |
+
gt_tracks = torch.cat(
|
| 104 |
+
[grad_tracks, rand_tracks, bcknd_tracks],
|
| 105 |
+
dim=1,
|
| 106 |
+
) # 1, (N1+N2+N3), T, 2
|
| 107 |
+
gt_vis = torch.cat(
|
| 108 |
+
[grad_vis, rand_vis, bcknd_vis],
|
| 109 |
+
dim=1,
|
| 110 |
+
) # 1, (N1+N2+N3), T, 1
|
| 111 |
+
queries = self._create_queries(
|
| 112 |
+
gt_tracks, gt_vis
|
| 113 |
+
) # 1, (N1+N2+N3), 3
|
| 114 |
+
|
| 115 |
+
video_folder = os.path.join(self.video_dir, video_id)
|
| 116 |
+
video_tensor = load_mose_video(video_folder) # keep on CPU
|
| 117 |
+
|
| 118 |
+
self.grad_tracks[video_id] = grad_tracks
|
| 119 |
+
self.rand_tracks[video_id] = rand_tracks
|
| 120 |
+
self.bcknd_tracks[video_id] = bcknd_tracks
|
| 121 |
+
self.gt_tracks[video_id] = gt_tracks
|
| 122 |
+
|
| 123 |
+
self.grad_vis[video_id] = grad_vis
|
| 124 |
+
self.rand_vis[video_id] = rand_vis
|
| 125 |
+
self.bcknd_vis[video_id] = bcknd_vis
|
| 126 |
+
self.gt_vis[video_id] = gt_vis
|
| 127 |
+
|
| 128 |
+
self.queries[video_id] = queries
|
| 129 |
+
self.videos[video_id] = video_tensor
|
| 130 |
+
|
| 131 |
+
return {
|
| 132 |
+
"video_id": video_id,
|
| 133 |
+
"video": self.videos[video_id],
|
| 134 |
+
"gt_tracks": self.gt_tracks[video_id],
|
| 135 |
+
"gt_vis": self.gt_vis[video_id],
|
| 136 |
+
"queries": self.queries[video_id],
|
| 137 |
+
}
|
dataloaders/lvosdataloader.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# from .mosedataloader import MoseTrackDataLoader, load_mose_video
|
| 2 |
from .mosedataloader import MoseTrackDataLoader, load_mose_video
|
| 3 |
import os
|
| 4 |
import torch
|
|
@@ -8,60 +7,16 @@ from PIL import Image
|
|
| 8 |
import sys
|
| 9 |
import pdb
|
| 10 |
|
| 11 |
-
import torch
|
| 12 |
-
from typing import List
|
| 13 |
-
from .mosedataloader import MoseTrackDataLoader
|
| 14 |
-
|
| 15 |
|
| 16 |
class LVOSTrackDataLoader(MoseTrackDataLoader):
|
| 17 |
-
|
| 18 |
def __init__(
|
| 19 |
self,
|
| 20 |
video_ids: List[str],
|
| 21 |
annotation_dir: str,
|
| 22 |
video_dir: str,
|
| 23 |
device: str = "cuda:0",
|
| 24 |
-
load_video: bool = True,
|
| 25 |
):
|
| 26 |
-
|
| 27 |
-
super().__init__(
|
| 28 |
-
video_ids, annotation_dir, video_dir, device, load_video
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
# Initialize caches for get()
|
| 32 |
-
self.videos = {}
|
| 33 |
-
self.gt_tracks = {}
|
| 34 |
-
self.gt_vis = {}
|
| 35 |
-
self.queries = {}
|
| 36 |
-
self.grad_tracks = {}
|
| 37 |
-
self.rand_tracks = {}
|
| 38 |
-
self.bcknd_tracks = {}
|
| 39 |
-
self.grad_vis = {}
|
| 40 |
-
self.rand_vis = {}
|
| 41 |
-
self.bcknd_vis = {}
|
| 42 |
-
|
| 43 |
-
self.load_video = load_video
|
| 44 |
-
|
| 45 |
-
def _load_annotations(self, path: str) -> torch.Tensor:
|
| 46 |
-
"""
|
| 47 |
-
Load a .npy annotation and return a Tensor of shape [N, T, 4]:
|
| 48 |
-
- [:,:,:2] = (x,y) track coords
|
| 49 |
-
- [:,:,2] = visibility mask (0/1)
|
| 50 |
-
- [:,:,3] = zeros (unused)
|
| 51 |
-
"""
|
| 52 |
-
a = np.load(path)
|
| 53 |
-
if a.ndim == 3 and a.shape[-1] >= 4:
|
| 54 |
-
arr = a[..., :4]
|
| 55 |
-
elif a.ndim == 3 and a.shape[-1] == 2:
|
| 56 |
-
tracks = a.astype(np.float32)
|
| 57 |
-
vis = np.ones(tracks.shape[:2], dtype=np.float32)[..., None]
|
| 58 |
-
zeros = np.zeros(tracks.shape[:2] + (1,), dtype=np.float32)
|
| 59 |
-
arr = np.concatenate([tracks, vis, zeros], axis=2)
|
| 60 |
-
else:
|
| 61 |
-
raise ValueError(
|
| 62 |
-
f"[Ego4DLoader] Unexpected annotation shape {a.shape}"
|
| 63 |
-
)
|
| 64 |
-
return torch.from_numpy(arr).to(self.device)
|
| 65 |
|
| 66 |
def _create_queries(
|
| 67 |
self, tracks: torch.Tensor, gt_vis: torch.Tensor
|
|
@@ -97,100 +52,69 @@ class LVOSTrackDataLoader(MoseTrackDataLoader):
|
|
| 97 |
)
|
| 98 |
|
| 99 |
def get(self, video_id: str):
|
| 100 |
-
"""
|
| 101 |
-
Returns dict with:
|
| 102 |
-
- video_id: str
|
| 103 |
-
- video: Tensor [T,3,H,W] or None
|
| 104 |
-
- gt_tracks: Tensor [1, N, T, 2]
|
| 105 |
-
- gt_vis: Tensor [1, N, T]
|
| 106 |
-
- queries: Tensor [1, N, 3]
|
| 107 |
-
Caches results to avoid reloading on subsequent calls.
|
| 108 |
-
"""
|
| 109 |
if video_id not in self.videos:
|
| 110 |
-
# Paths for each query type
|
| 111 |
grad_file = os.path.join(
|
| 112 |
-
self.annotation_dir,
|
| 113 |
)
|
| 114 |
rand_file = os.path.join(
|
| 115 |
-
self.annotation_dir,
|
| 116 |
)
|
| 117 |
bcknd_file = os.path.join(
|
| 118 |
-
self.annotation_dir,
|
| 119 |
)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
if not Ts:
|
| 136 |
-
raise FileNotFoundError(
|
| 137 |
-
f"No annotation files found for {video_id}"
|
| 138 |
-
)
|
| 139 |
-
T = Ts[0] # assume consistent length
|
| 140 |
-
|
| 141 |
-
# Prepare placeholders for missing types
|
| 142 |
-
grad_annots = (
|
| 143 |
-
data["grad"]
|
| 144 |
-
if data["grad"] is not None
|
| 145 |
-
else torch.empty(
|
| 146 |
-
(0, T, 4), dtype=torch.float32, device=self.device
|
| 147 |
-
)
|
| 148 |
-
)
|
| 149 |
-
rand_annots = (
|
| 150 |
-
data["rand"]
|
| 151 |
-
if data["rand"] is not None
|
| 152 |
-
else torch.empty(
|
| 153 |
-
(0, T, 4), dtype=torch.float32, device=self.device
|
| 154 |
-
)
|
| 155 |
-
)
|
| 156 |
-
bcknd_annots = (
|
| 157 |
-
data["bcknd"]
|
| 158 |
-
if data["bcknd"] is not None
|
| 159 |
-
else torch.empty(
|
| 160 |
-
(0, T, 4), dtype=torch.float32, device=self.device
|
| 161 |
-
)
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
# Split coords vs. vis
|
| 165 |
-
grad_tracks = grad_annots[..., :2].unsqueeze(0) # [1, N1, T, 2]
|
| 166 |
-
rand_tracks = rand_annots[..., :2].unsqueeze(0) # [1, N2, T, 2]
|
| 167 |
-
bcknd_tracks = bcknd_annots[..., :2].unsqueeze(0) # [1, N3, T, 2]
|
| 168 |
-
|
| 169 |
-
grad_vis = grad_annots[..., 2].unsqueeze(0) # [1, N1, T]
|
| 170 |
-
rand_vis = rand_annots[..., 2].unsqueeze(0) # [1, N2, T]
|
| 171 |
-
bcknd_vis = bcknd_annots[..., 2].unsqueeze(0) # [1, N3, T]
|
| 172 |
-
|
| 173 |
-
# Concatenate all queries
|
| 174 |
gt_tracks = torch.cat(
|
| 175 |
-
[grad_tracks, rand_tracks, bcknd_tracks],
|
| 176 |
-
|
|
|
|
| 177 |
gt_vis = torch.cat(
|
| 178 |
-
[grad_vis, rand_vis, bcknd_vis],
|
| 179 |
-
|
| 180 |
-
|
| 181 |
queries = self._create_queries(
|
| 182 |
gt_tracks, gt_vis
|
| 183 |
) # 1, (N1+N2+N3), 3
|
| 184 |
|
| 185 |
-
|
| 186 |
-
video_tensor =
|
| 187 |
-
if self.load_video:
|
| 188 |
-
vid_folder = os.path.join(self.video_dir, video_id)
|
| 189 |
-
video_tensor = load_mose_video(vid_folder).to(
|
| 190 |
-
self.device
|
| 191 |
-
) # [T,3,H,W]
|
| 192 |
|
| 193 |
-
# Cache for future calls
|
| 194 |
self.grad_tracks[video_id] = grad_tracks
|
| 195 |
self.rand_tracks[video_id] = rand_tracks
|
| 196 |
self.bcknd_tracks[video_id] = bcknd_tracks
|
|
|
|
|
|
|
| 1 |
from .mosedataloader import MoseTrackDataLoader, load_mose_video
|
| 2 |
import os
|
| 3 |
import torch
|
|
|
|
| 7 |
import sys
|
| 8 |
import pdb
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class LVOSTrackDataLoader(MoseTrackDataLoader):
|
|
|
|
| 12 |
def __init__(
|
| 13 |
self,
|
| 14 |
video_ids: List[str],
|
| 15 |
annotation_dir: str,
|
| 16 |
video_dir: str,
|
| 17 |
device: str = "cuda:0",
|
|
|
|
| 18 |
):
|
| 19 |
+
super().__init__(video_ids, annotation_dir, video_dir, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def _create_queries(
|
| 22 |
self, tracks: torch.Tensor, gt_vis: torch.Tensor
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
def get(self, video_id: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if video_id not in self.videos:
|
|
|
|
| 56 |
grad_file = os.path.join(
|
| 57 |
+
self.annotation_dir, f"{video_id}/{video_id}_gradient.npy"
|
| 58 |
)
|
| 59 |
rand_file = os.path.join(
|
| 60 |
+
self.annotation_dir, f"{video_id}/{video_id}_random.npy"
|
| 61 |
)
|
| 62 |
bcknd_file = os.path.join(
|
| 63 |
+
self.annotation_dir, f"{video_id}/{video_id}_background.npy"
|
| 64 |
)
|
| 65 |
|
| 66 |
+
use_bcknd, use_rand, use_grad = True, True, True
|
| 67 |
+
if os.path.exists(bcknd_file):
|
| 68 |
+
bcknd_annots = self._load_annotations(bcknd_file) # N1, T, 4
|
| 69 |
+
_, T, _ = bcknd_annots.shape
|
| 70 |
+
else:
|
| 71 |
+
use_bcknd = False
|
| 72 |
+
print(f"no background file for {video_id} found !!")
|
| 73 |
+
|
| 74 |
+
if os.path.exists(rand_file):
|
| 75 |
+
rand_annots = self._load_annotations(rand_file) # N2, T, 4
|
| 76 |
+
_, T, _ = rand_annots.shape
|
| 77 |
+
else:
|
| 78 |
+
print(f"no random queries file for {video_id} found !!")
|
| 79 |
+
use_rand = False
|
| 80 |
+
|
| 81 |
+
if os.path.exists(grad_file):
|
| 82 |
+
grad_annots = self._load_annotations(grad_file) # N3, T, 4
|
| 83 |
+
_, T, _ = grad_annots.shape
|
| 84 |
+
else:
|
| 85 |
+
use_grad = False
|
| 86 |
+
|
| 87 |
+
# creates empty tensors if those files aren't used
|
| 88 |
+
if not use_bcknd:
|
| 89 |
+
bcknd_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 90 |
+
if not use_rand:
|
| 91 |
+
rand_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 92 |
+
if not use_grad:
|
| 93 |
+
grad_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 94 |
+
|
| 95 |
+
grad_tracks = grad_annots[:, :, :2].unsqueeze(0)
|
| 96 |
+
rand_tracks = rand_annots[:, :, :2].unsqueeze(0)
|
| 97 |
+
bcknd_tracks = bcknd_annots[:, :, :2].unsqueeze(0)
|
| 98 |
+
|
| 99 |
+
grad_vis = grad_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 100 |
+
rand_vis = rand_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 101 |
+
bcknd_vis = bcknd_annots[:, :, 2].unsqueeze(0).to(self.device)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
gt_tracks = torch.cat(
|
| 104 |
+
[grad_tracks, rand_tracks, bcknd_tracks],
|
| 105 |
+
dim=1,
|
| 106 |
+
) # 1, (N1+N2+N3), T, 2
|
| 107 |
gt_vis = torch.cat(
|
| 108 |
+
[grad_vis, rand_vis, bcknd_vis],
|
| 109 |
+
dim=1,
|
| 110 |
+
) # 1, (N1+N2+N3), T, 1
|
| 111 |
queries = self._create_queries(
|
| 112 |
gt_tracks, gt_vis
|
| 113 |
) # 1, (N1+N2+N3), 3
|
| 114 |
|
| 115 |
+
video_folder = os.path.join(self.video_dir, video_id)
|
| 116 |
+
video_tensor = load_mose_video(video_folder) # keep on CPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
| 118 |
self.grad_tracks[video_id] = grad_tracks
|
| 119 |
self.rand_tracks[video_id] = rand_tracks
|
| 120 |
self.bcknd_tracks[video_id] = bcknd_tracks
|
dataloaders/mosedataloader.py
CHANGED
|
@@ -1,24 +1,37 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
MoseTrackDataLoader โ loads GT, visibility, queries for MOSE; skip video if desired.
|
| 4 |
-
"""
|
| 5 |
import os
|
| 6 |
import torch
|
| 7 |
import numpy as np
|
| 8 |
from typing import List
|
| 9 |
from PIL import Image
|
|
|
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class MoseTrackDataLoader:
|
|
@@ -28,13 +41,29 @@ class MoseTrackDataLoader:
|
|
| 28 |
annotation_dir: str,
|
| 29 |
video_dir: str,
|
| 30 |
device: str = "cuda:0",
|
| 31 |
-
load_video: bool = True,
|
| 32 |
):
|
| 33 |
self.video_ids = video_ids
|
| 34 |
self.annotation_dir = annotation_dir
|
| 35 |
self.video_dir = video_dir
|
| 36 |
self.device = torch.device(device)
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def _create_queries(self, tracks: torch.Tensor) -> torch.Tensor:
|
| 40 |
B, N, T, _ = tracks.shape
|
|
@@ -46,49 +75,81 @@ class MoseTrackDataLoader:
|
|
| 46 |
)
|
| 47 |
|
| 48 |
def get(self, video_id: str):
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
self.annotation_dir,
|
|
|
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
else:
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
return {
|
| 89 |
"video_id": video_id,
|
| 90 |
-
"video":
|
| 91 |
-
"gt_tracks": gt_tracks,
|
| 92 |
-
"gt_vis": gt_vis,
|
| 93 |
-
"queries": queries,
|
| 94 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from typing import List
|
| 5 |
from PIL import Image
|
| 6 |
+
import sys
|
| 7 |
|
| 8 |
+
# sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 9 |
+
# from utils import load_mose_video
|
| 10 |
|
| 11 |
+
|
| 12 |
+
# eek redundant... TODO(ilona) figure out importing of from utils here
|
| 13 |
+
def load_mose_video(video_folder):
|
| 14 |
+
files = [f for f in os.listdir(video_folder) if f.endswith(".jpg")]
|
| 15 |
+
files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
|
| 16 |
+
|
| 17 |
+
frames = [] # list to collect each image tensor
|
| 18 |
+
|
| 19 |
+
# print(files)
|
| 20 |
+
for filename in files:
|
| 21 |
+
filepath = os.path.join(video_folder, filename)
|
| 22 |
+
# Open image and ensure it's in RGB mode
|
| 23 |
+
img = Image.open(filepath).convert("RGB")
|
| 24 |
+
# Convert the image to a NumPy array of shape (H, W, 3)
|
| 25 |
+
img_np = np.array(img)
|
| 26 |
+
# Convert to (3, H, W) by reordering the axes
|
| 27 |
+
img_np = np.transpose(img_np, (2, 0, 1))
|
| 28 |
+
frames.append(img_np)
|
| 29 |
+
|
| 30 |
+
video_np = np.stack(frames, axis=0)
|
| 31 |
+
video_tensor = torch.from_numpy(video_np).float()
|
| 32 |
+
|
| 33 |
+
# [T, 3, H, W]
|
| 34 |
+
return video_tensor
|
| 35 |
|
| 36 |
|
| 37 |
class MoseTrackDataLoader:
|
|
|
|
| 41 |
annotation_dir: str,
|
| 42 |
video_dir: str,
|
| 43 |
device: str = "cuda:0",
|
|
|
|
| 44 |
):
|
| 45 |
self.video_ids = video_ids
|
| 46 |
self.annotation_dir = annotation_dir
|
| 47 |
self.video_dir = video_dir
|
| 48 |
self.device = torch.device(device)
|
| 49 |
+
|
| 50 |
+
self.grad_tracks = {}
|
| 51 |
+
self.rand_tracks = {}
|
| 52 |
+
self.bcknd_tracks = {}
|
| 53 |
+
self.gt_tracks = {}
|
| 54 |
+
|
| 55 |
+
self.grad_vis = {}
|
| 56 |
+
self.rand_vis = {}
|
| 57 |
+
self.bcknd_vis = {}
|
| 58 |
+
self.gt_vis = {}
|
| 59 |
+
|
| 60 |
+
self.queries = {}
|
| 61 |
+
self.videos = {}
|
| 62 |
+
|
| 63 |
+
def _load_annotations(self, file_path: str) -> torch.Tensor:
|
| 64 |
+
return torch.tensor(
|
| 65 |
+
np.load(file_path), dtype=torch.float32
|
| 66 |
+
) # [N, T, 4]
|
| 67 |
|
| 68 |
def _create_queries(self, tracks: torch.Tensor) -> torch.Tensor:
|
| 69 |
B, N, T, _ = tracks.shape
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
def get(self, video_id: str):
|
| 78 |
+
|
| 79 |
+
if video_id not in self.videos:
|
| 80 |
+
# Load annotations
|
| 81 |
+
grad_file = os.path.join(
|
| 82 |
+
self.annotation_dir, f"{video_id}/{video_id}_gradient.npy"
|
| 83 |
+
)
|
| 84 |
+
rand_file = os.path.join(
|
| 85 |
+
self.annotation_dir, f"{video_id}/{video_id}_random.npy"
|
| 86 |
)
|
| 87 |
+
bcknd_file = os.path.join(
|
| 88 |
+
self.annotation_dir, f"{video_id}/{video_id}_background.npy"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
grad_annots = self._load_annotations(grad_file)
|
| 92 |
+
rand_annots = self._load_annotations(rand_file)
|
| 93 |
+
if os.path.exists(bcknd_file):
|
| 94 |
+
bcknd_annots = self._load_annotations(bcknd_file) # N1, T, 4
|
| 95 |
else:
|
| 96 |
+
_, T, _ = grad_annots.shape
|
| 97 |
+
bcknd_annots = torch.empty((0, T, 4), dtype=torch.float32)
|
| 98 |
+
|
| 99 |
+
grad_tracks = grad_annots[:, :, :2].unsqueeze(0)
|
| 100 |
+
rand_tracks = rand_annots[:, :, :2].unsqueeze(0)
|
| 101 |
+
bcknd_tracks = bcknd_annots[:, :, :2].unsqueeze(0)
|
| 102 |
+
|
| 103 |
+
grad_vis = grad_annots[:, :, 2].unsqueeze(0)
|
| 104 |
+
rand_vis = rand_annots[:, :, 2].unsqueeze(0)
|
| 105 |
+
bcknd_vis = bcknd_annots[:, :, 2].unsqueeze(0)
|
| 106 |
+
|
| 107 |
+
gt_tracks = torch.cat(
|
| 108 |
+
[grad_tracks, rand_tracks, bcknd_tracks], dim=1
|
| 109 |
+
)
|
| 110 |
+
gt_vis = torch.cat([grad_vis, rand_vis, bcknd_vis], dim=1)
|
| 111 |
+
queries = self._create_queries(gt_tracks)
|
| 112 |
+
|
| 113 |
+
video_folder = os.path.join(self.video_dir, video_id)
|
| 114 |
+
video_tensor = load_mose_video(video_folder)
|
| 115 |
+
|
| 116 |
+
# Store in memory if needed
|
| 117 |
+
self.grad_tracks[video_id] = grad_tracks
|
| 118 |
+
self.rand_tracks[video_id] = rand_tracks
|
| 119 |
+
self.bcknd_tracks[video_id] = bcknd_tracks
|
| 120 |
+
self.gt_tracks[video_id] = gt_tracks
|
| 121 |
+
|
| 122 |
+
self.grad_vis[video_id] = grad_vis
|
| 123 |
+
self.rand_vis[video_id] = rand_vis
|
| 124 |
+
self.bcknd_vis[video_id] = bcknd_vis
|
| 125 |
+
self.gt_vis[video_id] = gt_vis
|
| 126 |
+
|
| 127 |
+
self.queries[video_id] = queries
|
| 128 |
+
self.videos[video_id] = video_tensor
|
| 129 |
|
| 130 |
return {
|
| 131 |
"video_id": video_id,
|
| 132 |
+
"video": self.videos[video_id],
|
| 133 |
+
"gt_tracks": self.gt_tracks[video_id],
|
| 134 |
+
"gt_vis": self.gt_vis[video_id],
|
| 135 |
+
"queries": self.queries[video_id],
|
| 136 |
}
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# debugging
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
|
| 142 |
+
video_id_list = os.listdir(f"video_tool_annots/mose_npz")
|
| 143 |
+
video_id_list = list(set(v.split("_")[0] for v in video_id_list))
|
| 144 |
+
|
| 145 |
+
loader = MoseTrackDataLoader(
|
| 146 |
+
video_ids=video_id_list,
|
| 147 |
+
annotation_dir=f"video_tool_annots/mose_npz",
|
| 148 |
+
video_dir="/data/ilona/datasets/mose/mose_train/JPEGImages",
|
| 149 |
+
device="cpu",
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
data = loader.get("03e5f069")
|
| 153 |
+
print(data["video"].shape) # [T, 3, H, W]
|
| 154 |
+
print(data["gt_tracks"].shape) # [1, N, T, 2]
|
| 155 |
+
print(data["queries"].shape) # [1, N, 3]
|
ego4d/install_ego4d.sh
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
################## ilona command line history ##################
|
| 2 |
+
|
| 3 |
+
conda create -n ego4d-py312 python=3.12.7 -y
|
| 4 |
+
|
| 5 |
+
conda activate ego4d-py312
|
| 6 |
+
|
| 7 |
+
python -m pip install --upgrade pip setuptools wheel
|
| 8 |
+
|
| 9 |
+
pip install ego4d
|
| 10 |
+
pip install torch torchvision
|
| 11 |
+
pip install av
|
| 12 |
+
|
| 13 |
+
cd ego4d
|
| 14 |
+
|
| 15 |
+
# TODO: this part doesn't work at the moment
|
| 16 |
+
ego4d \
|
| 17 |
+
--datasets full_scale \
|
| 18 |
+
--video_uid_file video_uids.txt \
|
| 19 |
+
--aws_profile_name ego4d \
|
| 20 |
+
--output_directory ego4d_full_videos/ \
|
| 21 |
+
-y
|
| 22 |
+
|
| 23 |
+
# loads the metadata
|
| 24 |
+
python process_ego4d_videos.py
|
| 25 |
+
|
| 26 |
+
rm -rf ego4d_full_videos
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
################################################################
|
| 30 |
+
|
ego4d/process_ego4d_videos.py
CHANGED
|
@@ -33,7 +33,7 @@ for json_file in json_list:
|
|
| 33 |
|
| 34 |
# save paths
|
| 35 |
video_path = f"ego4d_videos/v2/full_scale/{video_id}.mp4"
|
| 36 |
-
save_dir = f"
|
| 37 |
|
| 38 |
print("\n PROCESSING VIDEO ", video_name)
|
| 39 |
|
|
@@ -56,13 +56,13 @@ for json_file in json_list:
|
|
| 56 |
|
| 57 |
print(f"Saved {len(cropped_vid)} frames to {save_dir}")
|
| 58 |
|
| 59 |
-
# TODO(ilona) - remove this later
|
| 60 |
-
# checks that current dataset aligns with the files that we have !!
|
| 61 |
# for frame_number in [f"{i:06d}" for i in range(0, num_output_frames)]:
|
| 62 |
# paths = [
|
| 63 |
-
# # f"/data/ilona/datasets/ego4d/ego4d_chosen_videos/{video_name}/rgb_frames/{frame_number}.jpg",
|
| 64 |
# f"/data/ilona/datasets/ego4d/ego4d_chosen_videos/{video_name}/rgb_frames/{frame_number}.jpg",
|
| 65 |
-
# f"/data/ilona/datasets/
|
|
|
|
| 66 |
# ]
|
| 67 |
|
| 68 |
# # Load images
|
|
|
|
| 33 |
|
| 34 |
# save paths
|
| 35 |
video_path = f"ego4d_videos/v2/full_scale/{video_id}.mp4"
|
| 36 |
+
save_dir = f"frames/{video_name}"
|
| 37 |
|
| 38 |
print("\n PROCESSING VIDEO ", video_name)
|
| 39 |
|
|
|
|
| 56 |
|
| 57 |
print(f"Saved {len(cropped_vid)} frames to {save_dir}")
|
| 58 |
|
| 59 |
+
# # TODO(ilona) - remove this later
|
| 60 |
+
# # checks that current dataset aligns with the files that we have !!
|
| 61 |
# for frame_number in [f"{i:06d}" for i in range(0, num_output_frames)]:
|
| 62 |
# paths = [
|
|
|
|
| 63 |
# f"/data/ilona/datasets/ego4d/ego4d_chosen_videos/{video_name}/rgb_frames/{frame_number}.jpg",
|
| 64 |
+
# # f"/data/ilona/datasets/go4d/frames/{video_name}/rgb_frames/{frame_number}.jpg",
|
| 65 |
+
# f"/data/ilona/datasets/itto_release/itto/ego4d/frames/{video_name}/{frame_number}.jpg",
|
| 66 |
# ]
|
| 67 |
|
| 68 |
# # Load images
|
ego4d/video_uids.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
c6047868-51a3-4bb8-b833-5453c1fa563c
|
| 2 |
d40be91b-85bb-4c47-ac18-52c4d044e3fc
|
| 3 |
3ae87694-c71b-4564-9aea-8d65ba9cc19d
|
|
@@ -18,7 +19,6 @@ be462bcf-13ad-446a-8dfb-248cb2e3417a
|
|
| 18 |
426eb9d9-d4cf-4acc-9efb-979f61a5be91
|
| 19 |
fa6386e1-82ba-4c67-b217-e11640546582
|
| 20 |
366b71ad-3f35-4704-b6ef-e793c7e73ac6
|
| 21 |
-
f42ae9c2-d43e-45af-8adb-02d0b16b2ef7
|
| 22 |
04046863-98c0-42a8-90f9-4191013cc252
|
| 23 |
127392a3-036a-4af6-9db9-ca00141229db
|
| 24 |
4675859e-620c-493a-b1e7-27c347074783
|
|
|
|
| 1 |
+
f42ae9c2-d43e-45af-8adb-02d0b16b2ef7
|
| 2 |
c6047868-51a3-4bb8-b833-5453c1fa563c
|
| 3 |
d40be91b-85bb-4c47-ac18-52c4d044e3fc
|
| 4 |
3ae87694-c71b-4564-9aea-8d65ba9cc19d
|
|
|
|
| 19 |
426eb9d9-d4cf-4acc-9efb-979f61a5be91
|
| 20 |
fa6386e1-82ba-4c67-b217-e11640546582
|
| 21 |
366b71ad-3f35-4704-b6ef-e793c7e73ac6
|
|
|
|
| 22 |
04046863-98c0-42a8-90f9-4191013cc252
|
| 23 |
127392a3-036a-4af6-9db9-ca00141229db
|
| 24 |
4675859e-620c-493a-b1e7-27c347074783
|