Datasets:
ArXiv:
License:
Upload 5 files
Browse files- Code/data.py +649 -0
- Code/database.md +79 -0
- Code/lmdb_access.py +39 -0
- Code/main.py +56 -0
- Code/utils.py +77 -0
Code/data.py
ADDED
|
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 4 |
+
from functools import partial
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Optional
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import lmdb
|
| 9 |
+
import gzip
|
| 10 |
+
import pickle
|
| 11 |
+
import json
|
| 12 |
+
|
| 13 |
+
from itertools import product
|
| 14 |
+
|
| 15 |
+
import numpy as np
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
from torch_geometric.data import Data, Dataset
|
| 20 |
+
from torch_geometric.loader import DataLoader
|
| 21 |
+
import periodictable
|
| 22 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 23 |
+
from torch.utils.data import SubsetRandomSampler, random_split, Subset
|
| 24 |
+
import bisect
|
| 25 |
+
|
| 26 |
+
HARTREE_2_EV = 27.2114
|
| 27 |
+
BOHR_2_ANGSTROM = 1.8897
|
| 28 |
+
_MEAN_ENERGY = -4.269320623583757
|
| 29 |
+
_STD_ENERGY = 1.0
|
| 30 |
+
_STD_FORCE_SCALE = 1.0
|
| 31 |
+
|
| 32 |
+
atomic_number_mapping = {}
|
| 33 |
+
for element in periodictable.elements:
|
| 34 |
+
atomic_number_mapping[element.symbol] = element.number
|
| 35 |
+
atomic_number_mapping[element.symbol.upper()] = element.number
|
| 36 |
+
atomic_number_mapping[element.symbol.lower()] = element.number
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
atom_energy = {
|
| 40 |
+
1: -0.5002727762,
|
| 41 |
+
4: -14.6684425428,
|
| 42 |
+
5: -24.6543539532,
|
| 43 |
+
6: -37.8462799513,
|
| 44 |
+
7: -54.5844893657,
|
| 45 |
+
8: -75.0606214015,
|
| 46 |
+
9: -99.7155354215,
|
| 47 |
+
14: -289.3723539998,
|
| 48 |
+
15: -341.2580898032,
|
| 49 |
+
16: -398.1049925382,
|
| 50 |
+
17: -460.1362417086,
|
| 51 |
+
21: -760.5813501324,
|
| 52 |
+
22: -849.3013849537,
|
| 53 |
+
23: -943.8255794204,
|
| 54 |
+
24: -1044.2810289455,
|
| 55 |
+
25: -1150.8680174849,
|
| 56 |
+
26: -1263.5207828239406,
|
| 57 |
+
27: -1382.5485719267936,
|
| 58 |
+
28: -1508.0542451335,
|
| 59 |
+
29: -1640.1731641564784,
|
| 60 |
+
31: -1924.5926070018,
|
| 61 |
+
32: -2076.6914561594,
|
| 62 |
+
33: -2235.5683127287,
|
| 63 |
+
34: -2401.2347730327,
|
| 64 |
+
35: -2573.8397377628
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
def find_last_index_with_key(objects, key):
|
| 68 |
+
last_index = -1
|
| 69 |
+
for i in range(len(objects) - 1, -1, -1):
|
| 70 |
+
if key in objects[i] and objects[i][key] is not None:
|
| 71 |
+
last_index = i
|
| 72 |
+
break
|
| 73 |
+
return last_index
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def data_to_pyg(data, key, stage='1st', filter=False):
|
| 77 |
+
def process_data(phase):
|
| 78 |
+
nonlocal data
|
| 79 |
+
nonlocal key
|
| 80 |
+
nonlocal stage
|
| 81 |
+
datas = []
|
| 82 |
+
if phase is None or len(phase) == 0:
|
| 83 |
+
return datas
|
| 84 |
+
|
| 85 |
+
if stage == 'mixing':
|
| 86 |
+
if len(data['DFT_2nd']) != 0:
|
| 87 |
+
last_index = find_last_index_with_key(data['DFT_2nd'], 'energy')
|
| 88 |
+
if last_index == -1:
|
| 89 |
+
if data['DFT_1st'] is None or len(data['DFT_1st']) == 0:
|
| 90 |
+
return datas
|
| 91 |
+
last_index = find_last_index_with_key(data['DFT_1st'], 'energy')
|
| 92 |
+
last_data = data['DFT_1st'][last_index]
|
| 93 |
+
else:
|
| 94 |
+
last_data = data['DFT_2nd'][last_index]
|
| 95 |
+
else:
|
| 96 |
+
if data['DFT_1st'] is None or len(data['DFT_1st']) == 0:
|
| 97 |
+
return datas
|
| 98 |
+
last_index = find_last_index_with_key(data['DFT_1st'], 'energy')
|
| 99 |
+
last_data = data['DFT_1st'][last_index]
|
| 100 |
+
|
| 101 |
+
elif stage == '1st':
|
| 102 |
+
last_index = find_last_index_with_key(data['DFT_1st'], 'energy')
|
| 103 |
+
if last_index == -1:
|
| 104 |
+
return datas
|
| 105 |
+
last_data = phase[last_index]
|
| 106 |
+
|
| 107 |
+
elif stage == '1st_smash':
|
| 108 |
+
last_index = find_last_index_with_key(data['DFT_1st'], 'energy')
|
| 109 |
+
if last_index == -1:
|
| 110 |
+
return datas
|
| 111 |
+
last_data = phase[last_index]
|
| 112 |
+
|
| 113 |
+
elif stage == '2nd':
|
| 114 |
+
last_index = find_last_index_with_key(data['DFT_2nd'], 'energy')
|
| 115 |
+
if last_index == -1:
|
| 116 |
+
return datas
|
| 117 |
+
last_data = phase[last_index]
|
| 118 |
+
|
| 119 |
+
elif stage == 'hf':
|
| 120 |
+
last_index = find_last_index_with_key(data['hf'], 'energy')
|
| 121 |
+
if last_index == -1:
|
| 122 |
+
return datas
|
| 123 |
+
last_data = phase[last_index]
|
| 124 |
+
|
| 125 |
+
elif stage == 'pm3':
|
| 126 |
+
last_index = find_last_index_with_key(data['pm3'], 'energy')
|
| 127 |
+
if last_index == -1:
|
| 128 |
+
return datas
|
| 129 |
+
last_data = phase[last_index]
|
| 130 |
+
else:
|
| 131 |
+
raise Exception('Unknown stage')
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
last_coordinates = last_data['coordinates']
|
| 135 |
+
last_energy = last_data['energy']
|
| 136 |
+
|
| 137 |
+
if stage == '1st_smash':
|
| 138 |
+
if 'charge' in last_coordinates[0]:
|
| 139 |
+
return datas
|
| 140 |
+
|
| 141 |
+
for d in phase:
|
| 142 |
+
coords = d['coordinates']
|
| 143 |
+
energy = d['energy']
|
| 144 |
+
gradient = d['gradient']
|
| 145 |
+
formation_energies = []
|
| 146 |
+
atomic_numbers = []
|
| 147 |
+
positions = []
|
| 148 |
+
last_positions = []
|
| 149 |
+
forces = []
|
| 150 |
+
|
| 151 |
+
if coords is None or len(
|
| 152 |
+
coords) == 0:
|
| 153 |
+
continue
|
| 154 |
+
|
| 155 |
+
if stage == '1st_smash':
|
| 156 |
+
if 'charge' in coords[0]:
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
if energy is None:
|
| 160 |
+
continue
|
| 161 |
+
if len(coords) != len(last_coordinates):
|
| 162 |
+
continue
|
| 163 |
+
if len(gradient) != len(coords):
|
| 164 |
+
continue
|
| 165 |
+
for i, atom_info in enumerate(coords):
|
| 166 |
+
atom = atom_info['atom']
|
| 167 |
+
atomic_number = atomic_number_mapping[atom]
|
| 168 |
+
x = atom_info['x']
|
| 169 |
+
y = atom_info['y']
|
| 170 |
+
z = atom_info['z']
|
| 171 |
+
|
| 172 |
+
atomic_numbers.append(atomic_number)
|
| 173 |
+
formation_energies.append(atom_energy[atomic_number])
|
| 174 |
+
positions.append([x, y, z])
|
| 175 |
+
last_positions.append([last_coordinates[i]['x'], last_coordinates[i]['y'],
|
| 176 |
+
last_coordinates[i]['z']])
|
| 177 |
+
forces.append([-gradient[i]['dx'] * HARTREE_2_EV * BOHR_2_ANGSTROM, -gradient[i]['dy'] * HARTREE_2_EV * BOHR_2_ANGSTROM,
|
| 178 |
+
-gradient[i]['dz'] * HARTREE_2_EV * BOHR_2_ANGSTROM])
|
| 179 |
+
|
| 180 |
+
x = torch.tensor(atomic_numbers, dtype=torch.long).view(-1,
|
| 181 |
+
1)
|
| 182 |
+
pos = torch.tensor(positions, dtype=torch.float)
|
| 183 |
+
last_pos = torch.tensor(last_positions,
|
| 184 |
+
dtype=torch.float)
|
| 185 |
+
y = torch.tensor([(energy - sum(formation_energies)) * HARTREE_2_EV / x.size(0)],
|
| 186 |
+
dtype=torch.float)
|
| 187 |
+
last_y = torch.tensor([(last_energy - sum(formation_energies)) * HARTREE_2_EV / x.size(0)],
|
| 188 |
+
dtype=torch.float)
|
| 189 |
+
y_force = torch.tensor(forces,
|
| 190 |
+
dtype=torch.float)
|
| 191 |
+
|
| 192 |
+
if (torch.isnan(x).any() or torch.isnan(pos).any() or torch.isnan(last_pos).any() or torch.isnan(
|
| 193 |
+
y).any() or torch.isnan(last_y).any() or torch.isnan(y_force).any()):
|
| 194 |
+
continue
|
| 195 |
+
|
| 196 |
+
ds = Data(x=x, natoms=x.size(0), pos=pos, last_pos=last_pos, y=y, last_y=last_y, y_force=y_force, cid=str(key))
|
| 197 |
+
datas.append(ds)
|
| 198 |
+
|
| 199 |
+
return datas
|
| 200 |
+
|
| 201 |
+
if stage == '1st':
|
| 202 |
+
return process_data(data['DFT_1st'])
|
| 203 |
+
elif stage == '1st_smash':
|
| 204 |
+
return process_data(data['DFT_1st'])
|
| 205 |
+
elif stage == '2nd':
|
| 206 |
+
return process_data(data['DFT_2nd'])
|
| 207 |
+
elif stage == 'mixing':
|
| 208 |
+
return process_data(data['DFT_1st']) + process_data(data['DFT_2nd'])
|
| 209 |
+
elif stage == 'pm3':
|
| 210 |
+
return process_data(data['pm3'])
|
| 211 |
+
elif stage == 'hf':
|
| 212 |
+
return process_data(data['hf'])
|
| 213 |
+
else:
|
| 214 |
+
raise Exception('Unknown stage')
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def process_key(key, db_path, stage, filtering):
|
| 218 |
+
env = lmdb.open(str(db_path), subdir=False, readonly=True, lock=False)
|
| 219 |
+
with env.begin(write=False) as txn:
|
| 220 |
+
datapoint_pickled = txn.get(key)
|
| 221 |
+
data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), stage, filter=filtering)
|
| 222 |
+
|
| 223 |
+
if len(data_objects) > 0:
|
| 224 |
+
return key
|
| 225 |
+
else:
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
def process_num(key, db_path, stage, filtering):
|
| 229 |
+
env = lmdb.open(str(db_path), subdir=False, readonly=True, lock=False)
|
| 230 |
+
with env.begin(write=False) as txn:
|
| 231 |
+
datapoint_pickled = txn.get(key)
|
| 232 |
+
data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), stage, filter=filtering)
|
| 233 |
+
|
| 234 |
+
if len(data_objects) > 0:
|
| 235 |
+
return len(data_objects)
|
| 236 |
+
else:
|
| 237 |
+
return None
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def get_valid_nums(db_path, keys, stage, filtering):
|
| 241 |
+
|
| 242 |
+
valid_nums = []
|
| 243 |
+
|
| 244 |
+
worker_func = partial(process_num, db_path=db_path, stage=stage, filtering=filtering)
|
| 245 |
+
|
| 246 |
+
with ProcessPoolExecutor(max_workers=32) as executor:
|
| 247 |
+
results = executor.map(worker_func, keys)
|
| 248 |
+
for maybe_len in tqdm(results, total=len(keys), desc="Get valid numbers"):
|
| 249 |
+
if maybe_len is not None:
|
| 250 |
+
valid_nums.append(maybe_len)
|
| 251 |
+
|
| 252 |
+
return valid_nums
|
| 253 |
+
|
| 254 |
+
def filter_valid_keys(db_path, keys, stage, filtering):
|
| 255 |
+
|
| 256 |
+
valid_keys = []
|
| 257 |
+
|
| 258 |
+
worker_func = partial(process_key, db_path=db_path, stage=stage, filtering=filtering)
|
| 259 |
+
|
| 260 |
+
with ProcessPoolExecutor(max_workers=32) as executor:
|
| 261 |
+
results = executor.map(worker_func, keys)
|
| 262 |
+
for maybe_key in tqdm(results, total=len(keys), desc="Filtering valid keys"):
|
| 263 |
+
if maybe_key is not None:
|
| 264 |
+
valid_keys.append(maybe_key)
|
| 265 |
+
|
| 266 |
+
return valid_keys
|
| 267 |
+
|
| 268 |
+
class LMDBDataset(Dataset):
|
| 269 |
+
|
| 270 |
+
def __init__(self, path, transform=None, keys_file='valid_keys', stage='1st', total_traj=True,
|
| 271 |
+
SubsetOnly=False, getTest = False, stochastic_frame = False) -> None:
|
| 272 |
+
|
| 273 |
+
super(LMDBDataset, self).__init__()
|
| 274 |
+
|
| 275 |
+
self.path = Path(path)
|
| 276 |
+
|
| 277 |
+
self.keys_file = keys_file
|
| 278 |
+
|
| 279 |
+
self.stage = stage
|
| 280 |
+
|
| 281 |
+
self.total_traj = total_traj
|
| 282 |
+
self.stochastic_frame = stochastic_frame
|
| 283 |
+
|
| 284 |
+
assert self.path.is_dir(), "Path is not a directory"
|
| 285 |
+
|
| 286 |
+
db_paths = sorted(self.path.glob("*.lmdb"))
|
| 287 |
+
|
| 288 |
+
assert len(db_paths) > 0, f"No LMDBs found in '{self.path}'"
|
| 289 |
+
|
| 290 |
+
self._keys = []
|
| 291 |
+
|
| 292 |
+
if total_traj:
|
| 293 |
+
self._nums = []
|
| 294 |
+
|
| 295 |
+
self.envs = []
|
| 296 |
+
|
| 297 |
+
self.SubsetOnly = SubsetOnly
|
| 298 |
+
|
| 299 |
+
self.postfix = ""
|
| 300 |
+
if SubsetOnly:
|
| 301 |
+
self.postfix = "_Subset"
|
| 302 |
+
|
| 303 |
+
for i, db_path in enumerate(db_paths):
|
| 304 |
+
|
| 305 |
+
if SubsetOnly:
|
| 306 |
+
if 'Data06.lmdb' not in str(db_path):
|
| 307 |
+
continue
|
| 308 |
+
|
| 309 |
+
# If we're generating the test set, skip all lmdbs that aren't the test otherwise skip only the test lmdb
|
| 310 |
+
if getTest:
|
| 311 |
+
if 'test.lmdb' not in str(db_path):
|
| 312 |
+
continue
|
| 313 |
+
else:
|
| 314 |
+
if 'test.lmdb' in str(db_path):
|
| 315 |
+
continue
|
| 316 |
+
|
| 317 |
+
cur_env = self.connect_db(db_path)
|
| 318 |
+
self.envs.append(cur_env)
|
| 319 |
+
|
| 320 |
+
lmdb_name = Path(str(db_path)).stem
|
| 321 |
+
|
| 322 |
+
if os.path.exists(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt')):
|
| 323 |
+
self._keys.append(self.load_keys(lmdb_name))
|
| 324 |
+
else:
|
| 325 |
+
with cur_env.begin() as txn:
|
| 326 |
+
all_keys = [key for key in tqdm(txn.cursor().iternext(values=False))]
|
| 327 |
+
filter_keys = filter_valid_keys(db_path, all_keys, self.stage, not self.SubsetOnly)
|
| 328 |
+
self._keys.append(filter_keys)
|
| 329 |
+
self.save_keys(filter_keys, lmdb_name)
|
| 330 |
+
|
| 331 |
+
if total_traj:
|
| 332 |
+
if os.path.exists(
|
| 333 |
+
self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt')):
|
| 334 |
+
self._nums.append(self.load_nums(lmdb_name))
|
| 335 |
+
else:
|
| 336 |
+
numbers = get_valid_nums(db_path, self._keys[-1], self.stage, not self.SubsetOnly)
|
| 337 |
+
self._nums.append(numbers)
|
| 338 |
+
self.save_numbers(numbers, lmdb_name)
|
| 339 |
+
|
| 340 |
+
if not total_traj:
|
| 341 |
+
keylens = [len(k) for k in self._keys]
|
| 342 |
+
self._keylen_cumulative = np.cumsum(keylens).tolist()
|
| 343 |
+
self.num_samples = sum(keylens)
|
| 344 |
+
|
| 345 |
+
else:
|
| 346 |
+
keylens = [sum(k) for k in self._nums]
|
| 347 |
+
self._keylen_cumulative = np.cumsum(keylens).tolist()
|
| 348 |
+
self._num_cumulative = [np.cumsum(k).tolist() for k in
|
| 349 |
+
self._nums]
|
| 350 |
+
self.num_samples = sum(
|
| 351 |
+
keylens)
|
| 352 |
+
nums_flat = np.concatenate([np.array(nums) for nums in self._nums])
|
| 353 |
+
cumulative_nums = np.cumsum(nums_flat)
|
| 354 |
+
start_indices = np.concatenate(([0], cumulative_nums[:-1]))
|
| 355 |
+
self.trajectory_indices = list(zip(start_indices.tolist(), cumulative_nums.tolist()))
|
| 356 |
+
|
| 357 |
+
self.transform = transform
|
| 358 |
+
|
| 359 |
+
self.maximum_dist = 0
|
| 360 |
+
|
| 361 |
+
def save_keys(self, keys, lmdb_name):
|
| 362 |
+
with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt'), 'w') as f:
|
| 363 |
+
for key in keys:
|
| 364 |
+
f.write(key.hex() + '\n')
|
| 365 |
+
|
| 366 |
+
def save_numbers(self, numbers, lmdb_name):
|
| 367 |
+
with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt'), 'w') as f:
|
| 368 |
+
for num in numbers:
|
| 369 |
+
f.write(str(num) + '\n')
|
| 370 |
+
|
| 371 |
+
def load_keys(self, lmdb_name):
|
| 372 |
+
|
| 373 |
+
with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}.txt'), 'r') as f:
|
| 374 |
+
keys = [bytes.fromhex(line.strip()) for line in f]
|
| 375 |
+
|
| 376 |
+
return keys
|
| 377 |
+
|
| 378 |
+
def load_nums(self, lmdb_name):
|
| 379 |
+
|
| 380 |
+
with open(self.path / Path(self.keys_file + f'_{lmdb_name}_{self.stage}{self.postfix}_number.txt'), 'r') as f:
|
| 381 |
+
nums = [int(line.strip()) for line in f]
|
| 382 |
+
return nums
|
| 383 |
+
|
| 384 |
+
def __len__(self) -> int:
|
| 385 |
+
return self.num_samples
|
| 386 |
+
|
| 387 |
+
def __getitem__(self, idx: int):
|
| 388 |
+
|
| 389 |
+
db_idx = bisect.bisect(self._keylen_cumulative, idx)
|
| 390 |
+
el_idx = idx
|
| 391 |
+
|
| 392 |
+
if db_idx != 0:
|
| 393 |
+
el_idx = idx - self._keylen_cumulative[db_idx - 1]
|
| 394 |
+
assert el_idx >= 0
|
| 395 |
+
|
| 396 |
+
if not self.total_traj:
|
| 397 |
+
datapoint_pickled = (
|
| 398 |
+
self.envs[db_idx]
|
| 399 |
+
.begin()
|
| 400 |
+
.get(self._keys[db_idx][el_idx])
|
| 401 |
+
)
|
| 402 |
+
data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), self._keys[db_idx][el_idx], filter=not self.SubsetOnly)
|
| 403 |
+
if len(data_objects) == 0:
|
| 404 |
+
return None
|
| 405 |
+
|
| 406 |
+
if self.transform is not None:
|
| 407 |
+
data_objects = [self.transform(data_object, self.stochastic_frame) for data_object in data_objects]
|
| 408 |
+
|
| 409 |
+
return random.choice(data_objects)
|
| 410 |
+
|
| 411 |
+
else:
|
| 412 |
+
num_idx = bisect.bisect(self._num_cumulative[db_idx], el_idx)
|
| 413 |
+
data_idx = el_idx
|
| 414 |
+
if num_idx != 0:
|
| 415 |
+
data_idx = el_idx - self._num_cumulative[db_idx][num_idx - 1]
|
| 416 |
+
assert data_idx >= 0
|
| 417 |
+
datapoint_pickled = (
|
| 418 |
+
self.envs[db_idx]
|
| 419 |
+
.begin()
|
| 420 |
+
.get(self._keys[db_idx][num_idx])
|
| 421 |
+
)
|
| 422 |
+
data_objects = data_to_pyg(pickle.loads(gzip.decompress(datapoint_pickled)), self._keys[db_idx][num_idx], filter=not self.SubsetOnly)
|
| 423 |
+
|
| 424 |
+
data_object = data_objects[data_idx]
|
| 425 |
+
if self.transform is not None:
|
| 426 |
+
data_object = self.transform(data_object, self.stochastic_frame)
|
| 427 |
+
return data_object
|
| 428 |
+
|
| 429 |
+
def connect_db(self, lmdb_path: Optional[Path] = None) -> lmdb.Environment:
|
| 430 |
+
env = lmdb.open(
|
| 431 |
+
str(lmdb_path),
|
| 432 |
+
subdir=False,
|
| 433 |
+
readonly=True,
|
| 434 |
+
lock=False,
|
| 435 |
+
readahead=False,
|
| 436 |
+
meminit=False,
|
| 437 |
+
max_readers=128,
|
| 438 |
+
)
|
| 439 |
+
return env
|
| 440 |
+
|
| 441 |
+
def close_db(self) -> None:
|
| 442 |
+
self.env.close()
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
class CommonLMDBDataset(Dataset):
|
| 446 |
+
|
| 447 |
+
def __init__(self, path, transform=None) -> None:
|
| 448 |
+
|
| 449 |
+
super(CommonLMDBDataset, self).__init__()
|
| 450 |
+
self.path = Path(path)
|
| 451 |
+
|
| 452 |
+
assert self.path.is_file(), "Path is not a file"
|
| 453 |
+
self.env = self.connect_db(self.path)
|
| 454 |
+
|
| 455 |
+
self.transform = transform
|
| 456 |
+
|
| 457 |
+
def __len__(self) -> int:
|
| 458 |
+
with self.env.begin() as txn:
|
| 459 |
+
self.all_keys = [key for key in tqdm(txn.cursor().iternext(values=False))]
|
| 460 |
+
return len(self.all_keys)
|
| 461 |
+
|
| 462 |
+
def __getitem__(self, idx: int):
|
| 463 |
+
datapoint_pickled = self.env.begin().get(self.all_keys[idx])
|
| 464 |
+
data_object = pickle.loads(gzip.decompress(datapoint_pickled))
|
| 465 |
+
pos = random.choice([pos for pos in data_object.pos])
|
| 466 |
+
data_object.pos = pos
|
| 467 |
+
if self.transform is not None:
|
| 468 |
+
data_object = self.transform(data_object, self.stochastic_frame)
|
| 469 |
+
|
| 470 |
+
return data_object
|
| 471 |
+
|
| 472 |
+
def connect_db(self, lmdb_path: Optional[Path] = None) -> lmdb.Environment:
|
| 473 |
+
env = lmdb.open(
|
| 474 |
+
str(lmdb_path),
|
| 475 |
+
subdir=False,
|
| 476 |
+
readonly=True,
|
| 477 |
+
lock=False,
|
| 478 |
+
readahead=False,
|
| 479 |
+
meminit=False,
|
| 480 |
+
max_readers=128,
|
| 481 |
+
)
|
| 482 |
+
return env
|
| 483 |
+
|
| 484 |
+
def close_db(self) -> None:
|
| 485 |
+
self.env.close()
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def initialize_datasets(root, transform, stage, total_traj, SubsetOnly, stochastic_frame):
|
| 489 |
+
lmdb_dataset = LMDBDataset(
|
| 490 |
+
root,
|
| 491 |
+
transform=transform,
|
| 492 |
+
stage=stage,
|
| 493 |
+
total_traj=total_traj,
|
| 494 |
+
SubsetOnly=SubsetOnly,
|
| 495 |
+
stochastic_frame=stochastic_frame
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
if not total_traj:
|
| 499 |
+
|
| 500 |
+
train_size = int(0.8 * len(lmdb_dataset))
|
| 501 |
+
val_size = len(lmdb_dataset) - train_size
|
| 502 |
+
|
| 503 |
+
with open('splits/new_split.json' if SubsetOnly else 'splits/new_split_full.json', 'r') as f:
|
| 504 |
+
split = json.load(f)
|
| 505 |
+
|
| 506 |
+
mol_indices = list(range(len(lmdb_dataset)))
|
| 507 |
+
mol_indices_np = np.array(mol_indices)
|
| 508 |
+
|
| 509 |
+
train_trajectory_indices = (mol_indices_np[split['train']]).tolist()
|
| 510 |
+
val_trajectory_indices = (mol_indices_np[split['val']]).tolist()
|
| 511 |
+
|
| 512 |
+
train_dataset = Subset(lmdb_dataset, train_trajectory_indices)
|
| 513 |
+
val_dataset = Subset(lmdb_dataset, val_trajectory_indices)
|
| 514 |
+
|
| 515 |
+
else:
|
| 516 |
+
num_trajectories = len(lmdb_dataset.trajectory_indices)
|
| 517 |
+
trajectory_indices = list(range(num_trajectories))
|
| 518 |
+
|
| 519 |
+
with open('splits/new_split.json' if SubsetOnly else 'splits/new_split_full.json', 'r') as f:
|
| 520 |
+
split = json.load(f)
|
| 521 |
+
|
| 522 |
+
trajectory_indices_np = np.array(trajectory_indices)
|
| 523 |
+
|
| 524 |
+
train_trajectory_indices = (trajectory_indices_np[split['train']]).tolist()
|
| 525 |
+
val_trajectory_indices = (trajectory_indices_np[split['val']]).tolist()
|
| 526 |
+
|
| 527 |
+
train_snapshot_indices = []
|
| 528 |
+
val_snapshot_indices = []
|
| 529 |
+
|
| 530 |
+
for idx_set, snapshot_indices_set in zip(
|
| 531 |
+
[train_trajectory_indices, val_trajectory_indices],
|
| 532 |
+
[train_snapshot_indices, val_snapshot_indices],
|
| 533 |
+
):
|
| 534 |
+
for traj_idx in idx_set:
|
| 535 |
+
start_idx, end_idx = lmdb_dataset.trajectory_indices[traj_idx]
|
| 536 |
+
snapshot_indices_set.extend(range(start_idx, end_idx))
|
| 537 |
+
|
| 538 |
+
train_dataset = Subset(lmdb_dataset, train_snapshot_indices)
|
| 539 |
+
val_dataset = Subset(lmdb_dataset, val_snapshot_indices)
|
| 540 |
+
|
| 541 |
+
lmdb_test_dataset = LMDBDataset(
|
| 542 |
+
root,
|
| 543 |
+
transform=transform,
|
| 544 |
+
stage=stage,
|
| 545 |
+
total_traj=True,
|
| 546 |
+
SubsetOnly=False,
|
| 547 |
+
getTest=True,
|
| 548 |
+
stochastic_frame=stochastic_frame
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
test_snapshot_indices = []
|
| 552 |
+
for start_idx, end_idx in lmdb_test_dataset.trajectory_indices:
|
| 553 |
+
test_snapshot_indices.extend(range(start_idx, end_idx))
|
| 554 |
+
test_dataset = Subset(lmdb_test_dataset, test_snapshot_indices)
|
| 555 |
+
|
| 556 |
+
return {"train": train_dataset, "val": val_dataset, "test": test_dataset}
|
| 557 |
+
|
| 558 |
+
def scale_transform(data, stochastic_frame=False):
|
| 559 |
+
y_scale = (data.y - _MEAN_ENERGY) / _STD_ENERGY
|
| 560 |
+
data.y = y_scale
|
| 561 |
+
data.y_force = data.y_force / _STD_FORCE_SCALE
|
| 562 |
+
data.pos = data.pos - data.pos.mean(0, keepdim=True)
|
| 563 |
+
data.num_atoms = data.pos.size(0)
|
| 564 |
+
if stochastic_frame:
|
| 565 |
+
plus_minus_list = list(product([1, -1], repeat=3))
|
| 566 |
+
index = random.randint(0, len(plus_minus_list) - 1)
|
| 567 |
+
signs = plus_minus_list[index]
|
| 568 |
+
Q = torch.linalg.eig(data.pos.T @ data.pos)[1] * torch.tensor(signs).unsqueeze(0)
|
| 569 |
+
data.Q = Q.to(torch.float32).unsqueeze(0).expand(data.pos.size(0), 3, 3)
|
| 570 |
+
|
| 571 |
+
return data
|
| 572 |
+
|
| 573 |
+
class LMDBDataLoader:
|
| 574 |
+
def __init__(
|
| 575 |
+
self,
|
| 576 |
+
root,
|
| 577 |
+
batch_size=32,
|
| 578 |
+
num_workers=4,
|
| 579 |
+
stage='1st',
|
| 580 |
+
total_traj=False,
|
| 581 |
+
SubsetOnly=False,
|
| 582 |
+
stochastic_frame=False
|
| 583 |
+
) -> None:
|
| 584 |
+
self.batch_size = batch_size
|
| 585 |
+
self.num_workers = num_workers
|
| 586 |
+
self.datasets = initialize_datasets(root, scale_transform, stage, total_traj,
|
| 587 |
+
SubsetOnly=SubsetOnly, stochastic_frame=stochastic_frame)
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
def train_loader(self, distributed=False):
|
| 591 |
+
if distributed:
|
| 592 |
+
sampler = DistributedSampler(self.datasets["train"])
|
| 593 |
+
else:
|
| 594 |
+
subset_indices = torch.randperm(len(self.datasets["train"]))
|
| 595 |
+
sampler = SubsetRandomSampler(subset_indices)
|
| 596 |
+
return DataLoader(
|
| 597 |
+
self.datasets["train"],
|
| 598 |
+
batch_size=self.batch_size,
|
| 599 |
+
drop_last=False,
|
| 600 |
+
num_workers=self.num_workers,
|
| 601 |
+
sampler=sampler,
|
| 602 |
+
pin_memory=True,
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
def val_loader(self, distributed=False):
|
| 606 |
+
if distributed:
|
| 607 |
+
sampler = DistributedSampler(self.datasets["val"])
|
| 608 |
+
return DataLoader(
|
| 609 |
+
self.datasets["val"],
|
| 610 |
+
batch_size=self.batch_size,
|
| 611 |
+
drop_last=False,
|
| 612 |
+
num_workers=self.num_workers,
|
| 613 |
+
sampler=sampler,
|
| 614 |
+
pin_memory=True,
|
| 615 |
+
)
|
| 616 |
+
return DataLoader(
|
| 617 |
+
self.datasets["val"],
|
| 618 |
+
batch_size=self.batch_size,
|
| 619 |
+
drop_last=False,
|
| 620 |
+
num_workers=self.num_workers,
|
| 621 |
+
pin_memory=True,
|
| 622 |
+
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
def test_loader(self, distributed=False):
|
| 626 |
+
if distributed:
|
| 627 |
+
sampler = DistributedSampler(self.datasets["test"])
|
| 628 |
+
return DataLoader(
|
| 629 |
+
self.datasets["test"],
|
| 630 |
+
batch_size=self.batch_size,
|
| 631 |
+
drop_last=False,
|
| 632 |
+
num_workers=self.num_workers,
|
| 633 |
+
sampler=sampler,
|
| 634 |
+
pin_memory=True,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
return DataLoader(
|
| 638 |
+
self.datasets["test"],
|
| 639 |
+
batch_size=self.batch_size,
|
| 640 |
+
drop_last=False,
|
| 641 |
+
num_workers=self.num_workers,
|
| 642 |
+
pin_memory=True,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
def serialize_and_compress(data: Data):
|
| 646 |
+
"""
|
| 647 |
+
Serializes the Data object using msgpack and compresses it using lz4.
|
| 648 |
+
"""
|
| 649 |
+
return gzip.compress(pickle.dumps(data))
|
Code/database.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Structure of LMDB
|
| 2 |
+
|
| 3 |
+
### Notes
|
| 4 |
+
- The coordinates at the last step of one stage match the first step coordinates of the next stage
|
| 5 |
+
- In some cases, the Hartree Fork results were copied to the raw DFT 1st file and in this case DFT 1st key is None
|
| 6 |
+
|
| 7 |
+
### Key-Value Structure
|
| 8 |
+
- **Keys**:
|
| 9 |
+
- CIDs as strings, e.g., `b'000015111'`
|
| 10 |
+
- Note: These are byte-encoded using `string.encode()` or `b'string'`
|
| 11 |
+
|
| 12 |
+
- **Values**:
|
| 13 |
+
- A nested dictionary containing multiple calculation methods:
|
| 14 |
+
- Uncompress values with:
|
| 15 |
+
```python
|
| 16 |
+
pickle.loads(gzip.decompress(val))
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
- Structure example:
|
| 20 |
+
```python
|
| 21 |
+
b'000015111' : {
|
| 22 |
+
'pm3' : [{step1}, {step2}, ..., {step_n}],
|
| 23 |
+
'hf' : [{step1}, {step2}, ..., {step_m}],
|
| 24 |
+
'DFT_1st' : [{step1}, {step2}, ..., {step_z}],
|
| 25 |
+
'DFT_2nd' : [{step1}, {step2}, ..., {step_k}]
|
| 26 |
+
}
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
- Each step is a nested dictionary with the following structure:
|
| 30 |
+
```python
|
| 31 |
+
{
|
| 32 |
+
'coordinates': {'atom': f'{element_letter}', 'charge': float(charge_val), 'x': float(x_val), 'y': float(y_val), 'z': float(z_val)}, ...
|
| 33 |
+
'energy': float(energy_val),
|
| 34 |
+
'gradient': {'atom': f'{element_letter}', 'charge': float(charge_val), 'dx': float(dx_val), 'dy': float(dy_val), 'dz': float(dz_val)}, ...
|
| 35 |
+
}
|
| 36 |
+
```
|
| 37 |
+
Note: DFT 1st stage for each molecule is calculated with either FireFly or SMASH. For SMASH method, it does not contain a charge value associated with each atom.
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
### Accessing LMDB Example
|
| 41 |
+
```python
|
| 42 |
+
import lmdb
|
| 43 |
+
import pickle
|
| 44 |
+
import gzip
|
| 45 |
+
|
| 46 |
+
lmdb_file = '/data/zacharykrueger321/Full/PubChemQC-Traj-Test/hokusai2017.lmdb'
|
| 47 |
+
|
| 48 |
+
with lmdb.open(lmdb_file, readonly=True, subdir=False) as env:
|
| 49 |
+
with env.begin() as txn:
|
| 50 |
+
val = pickle.loads(gzip.decompress((txn.get(b'000000984'))))
|
| 51 |
+
|
| 52 |
+
pm3_val = val['pm3']
|
| 53 |
+
hf_val = val['hf']
|
| 54 |
+
dft1st_val = val['DFT_1st']
|
| 55 |
+
dft2nd_val = val['DFT_2nd']
|
| 56 |
+
|
| 57 |
+
for step in dft1st_val:
|
| 58 |
+
|
| 59 |
+
# coords & grad is a list of dictionaries that stores the relevant information of each atom
|
| 60 |
+
# energy is a scalar representing the energy for that conformer
|
| 61 |
+
|
| 62 |
+
coords = step['coordinates']
|
| 63 |
+
energy = step['energy']
|
| 64 |
+
grad = step['gradient']
|
| 65 |
+
|
| 66 |
+
for atom in coords:
|
| 67 |
+
# access atom's attributes
|
| 68 |
+
element = atom['atom']
|
| 69 |
+
x = atom['x']
|
| 70 |
+
y = atom['y']
|
| 71 |
+
z = atom['z']
|
| 72 |
+
|
| 73 |
+
for atom in grad:
|
| 74 |
+
# access atom's attributes
|
| 75 |
+
element = atom['atom']
|
| 76 |
+
dx = atom['dx']
|
| 77 |
+
dy = atom['dy']
|
| 78 |
+
dz = atom['dz']
|
| 79 |
+
```
|
Code/lmdb_access.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lmdb
|
| 2 |
+
import pickle
|
| 3 |
+
import gzip
|
| 4 |
+
|
| 5 |
+
lmdb_file = '/data/zacharykrueger321/Full/PubChemQC-Traj-Test/hokusai2017.lmdb'
|
| 6 |
+
lmdb_file = '/data/zacharykrueger321/Full/PubChemQC-Traj-Test/test/test.lmdb'
|
| 7 |
+
|
| 8 |
+
with lmdb.open(lmdb_file, readonly=True, subdir=False) as env:
|
| 9 |
+
with env.begin() as txn:
|
| 10 |
+
val = pickle.loads(gzip.decompress((txn.get(b'000000984'))))
|
| 11 |
+
|
| 12 |
+
pm3_val = val['pm3']
|
| 13 |
+
hf_val = val['hf']
|
| 14 |
+
dft1st_val = val['DFT_1st']
|
| 15 |
+
dft2nd_val = val['DFT_2nd']
|
| 16 |
+
|
| 17 |
+
for step in dft1st_val:
|
| 18 |
+
|
| 19 |
+
# coords & grad is a list of dictionaries that stores the relevant information of each atom
|
| 20 |
+
# energy is a scalar representing the energy for that conformer
|
| 21 |
+
|
| 22 |
+
coords = step['coordinates']
|
| 23 |
+
energy = step['energy']
|
| 24 |
+
grad = step['gradient']
|
| 25 |
+
|
| 26 |
+
for atom in coords:
|
| 27 |
+
# access atom's attributes
|
| 28 |
+
element = atom['atom']
|
| 29 |
+
x = atom['x']
|
| 30 |
+
y = atom['y']
|
| 31 |
+
z = atom['z']
|
| 32 |
+
|
| 33 |
+
for atom in grad:
|
| 34 |
+
# access atom's attributes
|
| 35 |
+
element = atom['atom']
|
| 36 |
+
dx = atom['dx']
|
| 37 |
+
dy = atom['dy']
|
| 38 |
+
dz = atom['dz']
|
| 39 |
+
|
Code/main.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from data import LMDBDataLoader
|
| 4 |
+
from torch.optim import Adam
|
| 5 |
+
from models.schnet import SchNet
|
| 6 |
+
from utils import train, evaluate, ForceRMSELoss
|
| 7 |
+
from data import LMDBDataLoader, _STD_ENERGY, _STD_FORCE_SCALE
|
| 8 |
+
|
| 9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
|
| 11 |
+
root = '/data/zacharykrueger321/Full/PubChemQC-Traj-Test'
|
| 12 |
+
batch_size = 128
|
| 13 |
+
num_workers = 16
|
| 14 |
+
stage = '1st'
|
| 15 |
+
total_traj = True
|
| 16 |
+
SubsetOnly=True
|
| 17 |
+
|
| 18 |
+
loader = LMDBDataLoader(root=root, batch_size=batch_size, num_workers=num_workers, stage=stage, total_traj=total_traj, SubsetOnly=SubsetOnly)
|
| 19 |
+
|
| 20 |
+
train_set = loader.train_loader()
|
| 21 |
+
val_set = loader.val_loader()
|
| 22 |
+
test_set = loader.test_loader()
|
| 23 |
+
|
| 24 |
+
hidden_channels = 128
|
| 25 |
+
num_gaussians = 128
|
| 26 |
+
num_filters = 128
|
| 27 |
+
|
| 28 |
+
batch_size = 128
|
| 29 |
+
num_interactions = 4
|
| 30 |
+
cutoff = 4.5
|
| 31 |
+
|
| 32 |
+
model = SchNet(num_gaussians=num_gaussians, num_filters=num_filters, hidden_channels=hidden_channels, num_interactions=num_interactions, cutoff=cutoff)
|
| 33 |
+
model = model.to(device)
|
| 34 |
+
|
| 35 |
+
max_epochs = 100
|
| 36 |
+
|
| 37 |
+
params = [param for _, param in model.named_parameters() if param.requires_grad]
|
| 38 |
+
lr = 5e-4
|
| 39 |
+
weight_decay = 0.0
|
| 40 |
+
|
| 41 |
+
optimizer = Adam([{'params' : params},], lr=lr, weight_decay=weight_decay)
|
| 42 |
+
criterion_energy = nn.L1Loss()
|
| 43 |
+
|
| 44 |
+
criterion_force = ForceRMSELoss()
|
| 45 |
+
|
| 46 |
+
for epoch in range(max_epochs):
|
| 47 |
+
|
| 48 |
+
train_energy_loss, train_force_loss = train(model, device, train_set, optimizer, criterion_energy, criterion_force)
|
| 49 |
+
|
| 50 |
+
val_energy_loss, val_force_loss = evaluate(model, device, val_set, criterion_energy, criterion_force)
|
| 51 |
+
|
| 52 |
+
print(f"#IN#Epoch {epoch + 1}, Train Energy Loss: {train_energy_loss * _STD_ENERGY:.5f}, Val Energy Loss: {val_energy_loss * _STD_ENERGY:.5f}, Train Force Loss: {train_force_loss * _STD_FORCE_SCALE:.5f}, Val Force Loss: {val_force_loss * _STD_FORCE_SCALE:.5f}")
|
| 53 |
+
|
| 54 |
+
test_energy_loss, test_force_loss = evaluate(model, device, test_set, criterion_energy, criterion_force)
|
| 55 |
+
|
| 56 |
+
print(f'Test Energy Loss: {test_energy_loss * _STD_ENERGY:.5f}, Test Force Loss: {test_force_loss * _STD_FORCE_SCALE:.5f}')
|
Code/utils.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from data import _STD_ENERGY, _STD_FORCE_SCALE
|
| 4 |
+
from torch_scatter import scatter
|
| 5 |
+
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
class ForceRMSELoss(nn.Module):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
def forward(self, pred, target, batch):
|
| 13 |
+
return scatter((pred - target).pow(2).sum(dim=-1), batch, reduce="mean", dim=0, dim_size=batch.max().item() + 1).sqrt().mean()
|
| 14 |
+
|
| 15 |
+
def train(model, device, train_loader, optimizer, criterion_energy, criterion_force, energy_weight=1.0, force_weight=1.0, clip_gradients=False, grad_clip_norm=1.0):
|
| 16 |
+
model.train()
|
| 17 |
+
|
| 18 |
+
total_energy_loss = 0.
|
| 19 |
+
total_force_loss = 0.
|
| 20 |
+
|
| 21 |
+
progress_bar = tqdm(train_loader, desc='Training', bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
| 22 |
+
|
| 23 |
+
for batch in progress_bar:
|
| 24 |
+
optimizer.zero_grad()
|
| 25 |
+
data = batch.to(device, non_blocking=True)
|
| 26 |
+
|
| 27 |
+
energies, forces, mask = model(data)
|
| 28 |
+
|
| 29 |
+
energy_loss = criterion_energy(energies, data.y)
|
| 30 |
+
|
| 31 |
+
force_loss = criterion_force(forces, data.y_force[mask], data.batch[mask])
|
| 32 |
+
|
| 33 |
+
loss = energy_weight * energy_loss + force_weight * force_loss
|
| 34 |
+
|
| 35 |
+
total_energy_loss += energy_loss.item()
|
| 36 |
+
total_force_loss += force_loss.item()
|
| 37 |
+
|
| 38 |
+
loss.backward()
|
| 39 |
+
|
| 40 |
+
if clip_gradients:
|
| 41 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=grad_clip_norm)
|
| 42 |
+
|
| 43 |
+
optimizer.step()
|
| 44 |
+
|
| 45 |
+
progress_bar.set_description(
|
| 46 |
+
f"Training - Energy Loss: {energy_loss * _STD_ENERGY:.5f}, "
|
| 47 |
+
f"Force Loss: {force_loss * _STD_FORCE_SCALE:.5f}")
|
| 48 |
+
|
| 49 |
+
average_energy_loss = total_energy_loss / len(train_loader)
|
| 50 |
+
average_force_loss = total_force_loss / len(train_loader)
|
| 51 |
+
return average_energy_loss, average_force_loss
|
| 52 |
+
|
| 53 |
+
def evaluate(model, device, loader, criterion_energy, criterion_force):
|
| 54 |
+
model.eval()
|
| 55 |
+
|
| 56 |
+
total_energy_loss = 0.
|
| 57 |
+
total_force_loss = 0.
|
| 58 |
+
|
| 59 |
+
progress_bar = tqdm(loader, desc='Evaluating', bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')
|
| 60 |
+
|
| 61 |
+
for batch in progress_bar:
|
| 62 |
+
data = batch.to(device, non_blocking=True)
|
| 63 |
+
|
| 64 |
+
energies, forces, mask = model(data)
|
| 65 |
+
|
| 66 |
+
energy_loss = criterion_energy(energies, data.y)
|
| 67 |
+
force_loss = criterion_force(forces, data.y_force[mask], data.batch[mask])
|
| 68 |
+
|
| 69 |
+
total_energy_loss += energy_loss.item()
|
| 70 |
+
total_force_loss += force_loss.item()
|
| 71 |
+
|
| 72 |
+
progress_bar.set_description(
|
| 73 |
+
f"Evaluation - Energy Loss: {energy_loss * _STD_ENERGY:.5f}, Force Loss: {force_loss * _STD_FORCE_SCALE:.5f}")
|
| 74 |
+
|
| 75 |
+
average_energy_loss = total_energy_loss / len(loader)
|
| 76 |
+
average_force_loss = total_force_loss / len(loader)
|
| 77 |
+
return average_energy_loss, average_force_loss
|