import torch import torch.nn as nn from data import LMDBDataLoader from torch.optim import Adam from models.schnet import SchNet from utils import train, evaluate, ForceRMSELoss from data import LMDBDataLoader, _STD_ENERGY, _STD_FORCE_SCALE device = torch.device("cuda" if torch.cuda.is_available() else "cpu") root = '/path/to/lmdb/dir' batch_size = 128 num_workers = 16 stage = '1st' total_traj = True SubsetOnly=True loader = LMDBDataLoader(root=root, batch_size=batch_size, num_workers=num_workers, stage=stage, total_traj=total_traj, SubsetOnly=SubsetOnly) train_set = loader.train_loader() val_set = loader.val_loader() test_set = loader.test_loader() hidden_channels = 128 num_gaussians = 128 num_filters = 128 batch_size = 128 num_interactions = 4 cutoff = 4.5 model = SchNet(num_gaussians=num_gaussians, num_filters=num_filters, hidden_channels=hidden_channels, num_interactions=num_interactions, cutoff=cutoff) model = model.to(device) max_epochs = 100 params = [param for _, param in model.named_parameters() if param.requires_grad] lr = 5e-4 weight_decay = 0.0 optimizer = Adam([{'params' : params},], lr=lr, weight_decay=weight_decay) criterion_energy = nn.L1Loss() criterion_force = ForceRMSELoss() for epoch in range(max_epochs): train_energy_loss, train_force_loss = train(model, device, train_set, optimizer, criterion_energy, criterion_force) val_energy_loss, val_force_loss = evaluate(model, device, val_set, criterion_energy, criterion_force) print(f"#IN#Epoch {epoch + 1}, Train Energy Loss: {train_energy_loss * _STD_ENERGY:.5f}, Val Energy Loss: {val_energy_loss * _STD_ENERGY:.5f}, Train Force Loss: {train_force_loss * _STD_FORCE_SCALE:.5f}, Val Force Loss: {val_force_loss * _STD_FORCE_SCALE:.5f}") test_energy_loss, test_force_loss = evaluate(model, device, test_set, criterion_energy, criterion_force) print(f'Test Energy Loss: {test_energy_loss * _STD_ENERGY:.5f}, Test Force Loss: {test_force_loss * _STD_FORCE_SCALE:.5f}')