File size: 2,972 Bytes
599638a
e6833f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599638a
 
 
 
 
 
 
 
e6833f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599638a
 
e6833f7
599638a
 
e6833f7
599638a
 
e6833f7
599638a
 
e6833f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - en
license:
  - other
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
paperswithcode_id: crossner
pretty_name: CrossNER-SCIENCE
dataset_info:
  features:
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
            "0": O
            "1": B-scientist
            "2": I-scientist
            "3": B-person
            "4": I-person
            "5": B-university
            "6": I-university
            "7": B-organisation
            "8": I-organisation
            "9": B-country
            "10": I-country
            "11": B-location
            "12": I-location
            "13": B-discipline
            "14": I-discipline
            "15": B-enzyme
            "16": I-enzyme
            "17": B-protein
            "18": I-protein
            "19": B-chemicalelement
            "20": I-chemicalelement
            "21": B-chemicalcompound
            "22": I-chemicalcompound
            "23": B-astronomicalobject
            "24": I-astronomicalobject
            "25": B-academicjournal
            "26": I-academicjournal
            "27": B-event
            "28": I-event
            "29": B-theory
            "30": I-theory
            "31": B-award
            "32": I-award
            "33": B-misc
            "34": I-misc
  splits:
  - name: train
    num_bytes: 20000
    num_examples: 200
  - name: validation
    num_bytes: 45000
    num_examples: 450
  - name: test
    num_bytes: 54300
    num_examples: 543
---

# CrossNER SCIENCE Dataset

An NER dataset for cross-domain evaluation, [read more](https://arxiv.org/abs/2012.04373).  
This split contains labeled data from the SCIENCE domain.

## Features

- **tokens**: A list of words in the sentence
- **ner_tags**: A list of NER labels (as integers) corresponding to each token

## Label Mapping

The dataset uses the following 35 labels:

| Index | Label |
|-------|-------|
| 0 | O |
| 1 | B-scientist |
| 2 | I-scientist |
| 3 | B-person |
| 4 | I-person |
| 5 | B-university |
| 6 | I-university |
| 7 | B-organisation |
| 8 | I-organisation |
| 9 | B-country |
| 10 | I-country |
| 11 | B-location |
| 12 | I-location |
| 13 | B-discipline |
| 14 | I-discipline |
| 15 | B-enzyme |
| 16 | I-enzyme |
| 17 | B-protein |
| 18 | I-protein |
| 19 | B-chemicalelement |
| 20 | I-chemicalelement |
| 21 | B-chemicalcompound |
| 22 | I-chemicalcompound |
| 23 | B-astronomicalobject |
| 24 | I-astronomicalobject |
| 25 | B-academicjournal |
| 26 | I-academicjournal |
| 27 | B-event |
| 28 | I-event |
| 29 | B-theory |
| 30 | I-theory |
| 31 | B-award |
| 32 | I-award |
| 33 | B-misc |
| 34 | I-misc |

## Usage

```python
from datasets import load_dataset

dataset = load_dataset("eesuhn/crossner-science")
```