Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
ArXiv:
License:
metadata
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: crossner
pretty_name: CrossNER-SCIENCE
dataset_info:
features:
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-scientist
'2': I-scientist
'3': B-person
'4': I-person
'5': B-university
'6': I-university
'7': B-organisation
'8': I-organisation
'9': B-country
'10': I-country
'11': B-location
'12': I-location
'13': B-discipline
'14': I-discipline
'15': B-enzyme
'16': I-enzyme
'17': B-protein
'18': I-protein
'19': B-chemicalelement
'20': I-chemicalelement
'21': B-chemicalcompound
'22': I-chemicalcompound
'23': B-astronomicalobject
'24': I-astronomicalobject
'25': B-academicjournal
'26': I-academicjournal
'27': B-event
'28': I-event
'29': B-theory
'30': I-theory
'31': B-award
'32': I-award
'33': B-misc
'34': I-misc
splits:
- name: train
num_bytes: 20000
num_examples: 200
- name: validation
num_bytes: 45000
num_examples: 450
- name: test
num_bytes: 54300
num_examples: 543
CrossNER SCIENCE Dataset
An NER dataset for cross-domain evaluation, read more.
This split contains labeled data from the SCIENCE domain.
Features
- tokens: A list of words in the sentence
- ner_tags: A list of NER labels (as integers) corresponding to each token
Label Mapping
The dataset uses the following 35 labels:
| Index | Label |
|---|---|
| 0 | O |
| 1 | B-scientist |
| 2 | I-scientist |
| 3 | B-person |
| 4 | I-person |
| 5 | B-university |
| 6 | I-university |
| 7 | B-organisation |
| 8 | I-organisation |
| 9 | B-country |
| 10 | I-country |
| 11 | B-location |
| 12 | I-location |
| 13 | B-discipline |
| 14 | I-discipline |
| 15 | B-enzyme |
| 16 | I-enzyme |
| 17 | B-protein |
| 18 | I-protein |
| 19 | B-chemicalelement |
| 20 | I-chemicalelement |
| 21 | B-chemicalcompound |
| 22 | I-chemicalcompound |
| 23 | B-astronomicalobject |
| 24 | I-astronomicalobject |
| 25 | B-academicjournal |
| 26 | I-academicjournal |
| 27 | B-event |
| 28 | I-event |
| 29 | B-theory |
| 30 | I-theory |
| 31 | B-award |
| 32 | I-award |
| 33 | B-misc |
| 34 | I-misc |
Usage
from datasets import load_dataset
dataset = load_dataset("eesuhn/crossner-science")