Datasets:

ArXiv:
File size: 8,025 Bytes
c558c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
"""

from verl import DataProto
import torch
from verl.utils.reward_score import gsm8k, math
from verl.trainer.ppo.ray_trainer_new import RayPPOTrainer


def _select_rm_score_fn(data_source):
    if data_source == 'openai/gsm8k':
        return gsm8k.compute_score
    elif data_source == 'lighteval/MATH':
        return math.compute_score
    else:
        raise NotImplementedError


class RewardManager():

    def __init__(self, tokenizer, num_examine) -> None:
        self.tokenizer = tokenizer
        self.num_examine = num_examine  # the number of batches of decoded responses to print to the console

    def __call__(self, data: DataProto, return_dict: bool = False):
        """We will expand this function gradually based on the available datasets"""

        # If there is rm score, we directly return rm score. Otherwise, we compute via rm_score_fn
        if 'rm_scores' in data.batch.keys():
            return data.batch['rm_scores']

        reward_tensor = torch.zeros_like(data.batch['responses'], dtype=torch.float32)

        already_print_data_sources = {}

        for i in range(len(data)):
            data_item = data[i]  # DataProtoItem

            prompt_ids = data_item.batch['prompts']

            prompt_length = prompt_ids.shape[-1]

            valid_prompt_length = data_item.batch['attention_mask'][:prompt_length].sum()
            valid_prompt_ids = prompt_ids[-valid_prompt_length:]

            response_ids = data_item.batch['responses']
            valid_response_length = data_item.batch['attention_mask'][prompt_length:].sum()
            valid_response_ids = response_ids[:valid_response_length]

            # decode
            sequences = torch.cat((valid_prompt_ids, valid_response_ids))
            sequences_str = self.tokenizer.decode(sequences)

            ground_truth = data_item.non_tensor_batch['reward_model']['ground_truth']

            # select rm_score
            data_source = data_item.non_tensor_batch['data_source']
            compute_score_fn = _select_rm_score_fn(data_source)

            score = compute_score_fn(solution_str=sequences_str, ground_truth=ground_truth)
            reward_tensor[i, valid_response_length - 1] = score

            if data_source not in already_print_data_sources:
                already_print_data_sources[data_source] = 0

            if already_print_data_sources[data_source] < self.num_examine:
                already_print_data_sources[data_source] += 1
                print(sequences_str)

        if return_dict:
            return {"reward_tensor": reward_tensor}
        else:
            return reward_tensor


import ray
import hydra
from split_monkey_patch import fit


@hydra.main(config_path='config', config_name='ppo_trainer_split', version_base=None)
def main(config):
    if not ray.is_initialized():
        # this is for local ray cluster
        ray.init(runtime_env={'env_vars': {'TOKENIZERS_PARALLELISM': 'true', 'NCCL_DEBUG': 'WARN'}})

    ray.get(main_task.remote(config))


@ray.remote
def main_task(config):
    from verl.utils.fs import copy_to_local
    from transformers import AutoTokenizer

    # print initial config
    from pprint import pprint
    from omegaconf import OmegaConf
    pprint(OmegaConf.to_container(config, resolve=True))  # resolve=True will eval symbol values
    OmegaConf.resolve(config)

    # download the checkpoint from hdfs
    local_path = copy_to_local(config.actor_rollout_ref.model.path)

    # instantiate tokenizer
    from verl.utils import hf_tokenizer
    tokenizer = hf_tokenizer(local_path)

    # define worker classes
    if config.actor_rollout_ref.actor.strategy == 'fsdp':
        assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
        from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
        from verl.single_controller.ray import RayWorkerGroup
        ray_worker_group_cls = RayWorkerGroup

    elif config.actor_rollout_ref.actor.strategy == 'megatron':
        assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
        from verl.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker
        from verl.single_controller.ray.megatron import NVMegatronRayWorkerGroup
        ray_worker_group_cls = NVMegatronRayWorkerGroup

    else:
        raise NotImplementedError

    from verl.trainer.ppo.ray_trainer_new import ResourcePoolManager, Role

    role_worker_mapping = {
        Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
        Role.Critic: ray.remote(CriticWorker),
    }

    # NOTE: initialze two resource pool
    actor_rollout_ref_pool_id = 'actor_rollout_ref_pool'
    critic_pool_id = 'critic_pool'
    if config.trainer.nnodes // 2 == 0 and config.trainer.n_gpus_per_node // 2 > 0:
        resource_pool_spec = {
            actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
            critic_pool_id: [config.trainer.n_gpus_per_node // 2] * config.trainer.nnodes,
        }
    else:
        resource_pool_spec = {
            actor_rollout_ref_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
            critic_pool_id: [config.trainer.n_gpus_per_node] * (config.trainer.nnodes // 2),
        }
    print(f'resource_pool_spec: {resource_pool_spec}')
    mapping = {
        Role.ActorRollout: actor_rollout_ref_pool_id,
        Role.Critic: critic_pool_id,
    }

    #use reference model
    if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss:
        role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker)
        mapping[Role.RefPolicy] = actor_rollout_ref_pool_id

    # we should adopt a multi-source reward function here
    # - for rule-based rm, we directly call a reward score
    # - for model-based rm, we call a model
    # - for code related prompt, we send to a sandbox if there are test cases
    # - finally, we combine all the rewards together
    # - The reward type depends on the tag of the data
    if config.reward_model.enable:
        if config.reward_model.strategy == 'fsdp':
            from verl.workers.fsdp_workers import RewardModelWorker
        elif config.reward_model.strategy == 'megatron':
            from verl.workers.megatron_workers import RewardModelWorker
        else:
            raise NotImplementedError
        role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker)
        mapping[Role.RewardModel] = critic_pool_id

    reward_fn = RewardManager(tokenizer=tokenizer, num_examine=0)

    # Note that we always use function-based RM for validation
    val_reward_fn = RewardManager(tokenizer=tokenizer, num_examine=1)

    resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)

    RayPPOTrainer.fit = fit
    trainer = RayPPOTrainer(config=config,
                            tokenizer=tokenizer,
                            role_worker_mapping=role_worker_mapping,
                            resource_pool_manager=resource_pool_manager,
                            ray_worker_group_cls=ray_worker_group_cls,
                            reward_fn=reward_fn,
                            val_reward_fn=val_reward_fn)
    trainer.init_workers()
    trainer.fit()


if __name__ == '__main__':
    main()