Datasets:

ArXiv:
happynew111's picture
Upload Qwen 2.5 3B Instruct model checkpoint
c558c84 verified
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
- Preprocess data and split the training set into 75% for training RM and 25% for validting RM.
- All the training data is used to train SFT and RL.
- Both chosen and rejected is used to train SFT
"""
import argparse
import os
import pandas as pd
from datasets import load_dataset
from tqdm.auto import tqdm
from verl.utils.fs import copy, makedirs
def generate_sft_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlh/sft'):
dataset = load_dataset('Dahoas/full-hh-rlhf')
output = {'prompt': [], 'response': []}
for data in tqdm(dataset['train']):
# add chosen
output['prompt'].append(data['prompt'])
output['response'].append(data['chosen'])
# add rejection
output['prompt'].append(data['prompt'])
output['response'].append(data['rejected'])
df = pd.DataFrame(output)
local_dir = os.path.expanduser(local_dir)
os.makedirs(local_dir, exist_ok=True)
local_path = os.path.join(local_dir, 'train.parquet')
df.to_parquet(path=local_path)
if target_hdfs_path_dir is not None:
hdfs_dir = target_hdfs_path_dir + '/' + 'train.parquet'
makedirs(hdfs_dir)
copy(local_path, hdfs_dir)
def generate_rm_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlh/rm'):
train_dataset = load_dataset('Dahoas/full-hh-rlhf', split='train[:75%]')
test_dataset = load_dataset('Dahoas/full-hh-rlhf', split='train[-25%:]')
local_dir = os.path.expanduser(local_dir)
os.makedirs(local_dir, exist_ok=True)
for dataset, name in zip([train_dataset, test_dataset], ['train', 'test']):
output = {'prompt': [], 'chosen': [], 'rejected': []}
for data in tqdm(dataset):
# add chosen
output['prompt'].append(data['prompt'])
output['chosen'].append(data['chosen'])
output['rejected'].append(data['rejected'])
df = pd.DataFrame(output)
local_path = os.path.join(local_dir, name + '.parquet')
df.to_parquet(path=local_path)
if target_hdfs_path_dir is not None:
hdfs_dir = target_hdfs_path_dir + '/' + name + '.parquet'
makedirs(hdfs_dir)
copy(local_path, hdfs_dir)
def generate_rl_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlhf/rl'):
dataset = load_dataset('Dahoas/full-hh-rlhf')
train_dataset = dataset['train']
data_source = 'Dahoas/full-hh-rlhf'
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
prompt = example.pop('prompt')
response = example.pop('response')
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": prompt
}],
"ability": "alignment",
"reward_model": {
"style": "model",
"ground_truth": response # should not be used
},
"extra_info": {
'split': split,
'index': idx
}
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
local_dir = os.path.expanduser(local_dir)
local_path = os.path.join(local_dir, 'train.parquet')
train_dataset.to_parquet(local_path)
if target_hdfs_path_dir is not None:
hdfs_dir = target_hdfs_path_dir + '/' + 'train.parquet'
makedirs(hdfs_dir)
copy(local_path, hdfs_dir)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--split', type=str, choices=['sft', 'rm', 'rl'], required=True)
parser.add_argument('--local_dir', type=str, default='~/data/full_hh_rlhf')
parser.add_argument('--hdfs_dir', type=str, required=False, default=None)
args = parser.parse_args()
if args.split == 'sft':
generate_sft_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
elif args.split == 'rm':
generate_rm_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
elif args.split == 'rl':
generate_rl_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
else:
raise NotImplementedError