|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
- Preprocess data and split the training set into 75% for training RM and 25% for validting RM. |
|
|
- All the training data is used to train SFT and RL. |
|
|
- Both chosen and rejected is used to train SFT |
|
|
""" |
|
|
import argparse |
|
|
import os |
|
|
|
|
|
import pandas as pd |
|
|
from datasets import load_dataset |
|
|
|
|
|
from tqdm.auto import tqdm |
|
|
|
|
|
from verl.utils.fs import copy, makedirs |
|
|
|
|
|
|
|
|
def generate_sft_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlh/sft'): |
|
|
dataset = load_dataset('Dahoas/full-hh-rlhf') |
|
|
output = {'prompt': [], 'response': []} |
|
|
for data in tqdm(dataset['train']): |
|
|
|
|
|
output['prompt'].append(data['prompt']) |
|
|
output['response'].append(data['chosen']) |
|
|
|
|
|
|
|
|
output['prompt'].append(data['prompt']) |
|
|
output['response'].append(data['rejected']) |
|
|
|
|
|
df = pd.DataFrame(output) |
|
|
|
|
|
local_dir = os.path.expanduser(local_dir) |
|
|
os.makedirs(local_dir, exist_ok=True) |
|
|
|
|
|
local_path = os.path.join(local_dir, 'train.parquet') |
|
|
|
|
|
df.to_parquet(path=local_path) |
|
|
|
|
|
if target_hdfs_path_dir is not None: |
|
|
hdfs_dir = target_hdfs_path_dir + '/' + 'train.parquet' |
|
|
makedirs(hdfs_dir) |
|
|
|
|
|
copy(local_path, hdfs_dir) |
|
|
|
|
|
|
|
|
def generate_rm_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlh/rm'): |
|
|
train_dataset = load_dataset('Dahoas/full-hh-rlhf', split='train[:75%]') |
|
|
test_dataset = load_dataset('Dahoas/full-hh-rlhf', split='train[-25%:]') |
|
|
|
|
|
local_dir = os.path.expanduser(local_dir) |
|
|
os.makedirs(local_dir, exist_ok=True) |
|
|
|
|
|
for dataset, name in zip([train_dataset, test_dataset], ['train', 'test']): |
|
|
output = {'prompt': [], 'chosen': [], 'rejected': []} |
|
|
for data in tqdm(dataset): |
|
|
|
|
|
output['prompt'].append(data['prompt']) |
|
|
output['chosen'].append(data['chosen']) |
|
|
output['rejected'].append(data['rejected']) |
|
|
|
|
|
df = pd.DataFrame(output) |
|
|
|
|
|
local_path = os.path.join(local_dir, name + '.parquet') |
|
|
|
|
|
df.to_parquet(path=local_path) |
|
|
|
|
|
if target_hdfs_path_dir is not None: |
|
|
hdfs_dir = target_hdfs_path_dir + '/' + name + '.parquet' |
|
|
makedirs(hdfs_dir) |
|
|
|
|
|
copy(local_path, hdfs_dir) |
|
|
|
|
|
|
|
|
def generate_rl_dataset(target_hdfs_path_dir, local_dir='~/data/full_hh_rlhf/rl'): |
|
|
dataset = load_dataset('Dahoas/full-hh-rlhf') |
|
|
train_dataset = dataset['train'] |
|
|
|
|
|
data_source = 'Dahoas/full-hh-rlhf' |
|
|
|
|
|
|
|
|
def make_map_fn(split): |
|
|
|
|
|
def process_fn(example, idx): |
|
|
prompt = example.pop('prompt') |
|
|
response = example.pop('response') |
|
|
|
|
|
data = { |
|
|
"data_source": data_source, |
|
|
"prompt": [{ |
|
|
"role": "user", |
|
|
"content": prompt |
|
|
}], |
|
|
"ability": "alignment", |
|
|
"reward_model": { |
|
|
"style": "model", |
|
|
"ground_truth": response |
|
|
}, |
|
|
"extra_info": { |
|
|
'split': split, |
|
|
'index': idx |
|
|
} |
|
|
} |
|
|
return data |
|
|
|
|
|
return process_fn |
|
|
|
|
|
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True) |
|
|
local_dir = os.path.expanduser(local_dir) |
|
|
local_path = os.path.join(local_dir, 'train.parquet') |
|
|
train_dataset.to_parquet(local_path) |
|
|
|
|
|
if target_hdfs_path_dir is not None: |
|
|
hdfs_dir = target_hdfs_path_dir + '/' + 'train.parquet' |
|
|
makedirs(hdfs_dir) |
|
|
|
|
|
copy(local_path, hdfs_dir) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--split', type=str, choices=['sft', 'rm', 'rl'], required=True) |
|
|
parser.add_argument('--local_dir', type=str, default='~/data/full_hh_rlhf') |
|
|
parser.add_argument('--hdfs_dir', type=str, required=False, default=None) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.split == 'sft': |
|
|
generate_sft_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split)) |
|
|
elif args.split == 'rm': |
|
|
generate_rm_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split)) |
|
|
elif args.split == 'rl': |
|
|
generate_rl_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split)) |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|