# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess Hellaswag dataset. """ import re import os import datasets from verl.utils.hdfs_io import copy, makedirs import argparse def preprocess(text): text = text.strip() # NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag. text = text.replace(" [title]", ". ") text = re.sub("\\[.*?\\]", "", text) text = text.replace(" ", " ") return text if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--local_dir', default='/opt/tiger/hellaswag') parser.add_argument('--hdfs_dir', default=None) args = parser.parse_args() data_source = 'Rowan/hellaswag' dataset = datasets.load_dataset(data_source, trust_remote_code=True) train_dataset = dataset['train'] val_dataset = dataset['validation'] test_dataset = dataset['test'] instruction = 'Please complete the following sentence.\n' def make_map_fn(split): def process_fn(doc, idx): ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize() query = preprocess(doc["activity_label"] + ": " + ctx) choices = [preprocess(ending) for ending in doc["endings"]] gold = int(doc["label"]) data = { "data_source": data_source, "prompt": [{ "role": "user", "content": query }], "ability": "nlp", "reward_model": { "style": "model", "eval": "multiple_choice", # using loglikelihood "ground_truth": gold, "choices": choices }, "extra_info": { 'split': split, 'index': idx } } return data return process_fn # filter data that doesn't have a label train_dataset = train_dataset.filter(lambda x: len(x['label']) > 0) val_dataset = val_dataset.filter(lambda x: len(x['label']) > 0) test_dataset = test_dataset.filter(lambda x: len(x['label']) > 0) train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True) val_dataset = val_dataset.map(function=make_map_fn('validation'), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet')) val_dataset.to_parquet(os.path.join(local_dir, 'validation.parquet')) test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet')) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)