# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the MATH-lighteval dataset to parquet format """ import os import datasets from verl.utils.hdfs_io import copy, makedirs import argparse from verl.utils.reward_score.math import remove_boxed, last_boxed_only_string def extract_solution(solution_str): return remove_boxed(last_boxed_only_string(solution_str)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--local_dir', default='~/data/math') parser.add_argument('--hdfs_dir', default=None) args = parser.parse_args() # 'lighteval/MATH' is no longer available on huggingface. # Use mirror repo: DigitalLearningGmbH/MATH-lighteval data_source = 'DigitalLearningGmbH/MATH-lighteval' print(f"Loading the {data_source} dataset from huggingface...", flush=True) dataset = datasets.load_dataset(data_source, trust_remote_code=True) train_dataset = dataset['train'] test_dataset = dataset['test'] instruction_following = "Let's think step by step and output the final answer within \\boxed{}." # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): question = example.pop('problem') question = question + ' ' + instruction_following answer = example.pop('solution') solution = extract_solution(answer) data = { "data_source": data_source, "prompt": [{ "role": "user", "content": question }], "ability": "math", "reward_model": { "style": "rule", "ground_truth": solution }, "extra_info": { 'split': split, 'index': idx } } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet')) test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet')) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)