# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ An naive implementation of split placment example """ from pprint import pprint from verl import DataProto from verl.trainer.ppo.ray_trainer_new import compute_advantage, apply_kl_penalty, reduce_metrics, compute_data_metrics, _timer, compute_timing_metrics, AdvantageEstimator from copy import deepcopy import numpy as np import torch import uuid def fit(self): """ The training loop of PPO. The driver process only need to call the compute functions of the worker group through RPC to construct the PPO dataflow. The light-weight advantage computation is done on the driver process. """ from verl.utils.tracking import Tracking from omegaconf import OmegaConf logger = Tracking(project_name=self.config.trainer.project_name, experiment_name=self.config.trainer.experiment_name, default_backend=self.config.trainer.logger, config=OmegaConf.to_container(self.config, resolve=True)) self.global_steps = 0 # load checkpoint before doing anything self._load_checkpoint() # perform validation before training # currently, we only support validation using the reward_function. if self.val_reward_fn is not None and self.config.trainer.get('val_before_train', True): val_metrics = self._validate() pprint(f'Initial validation metrics: {val_metrics}') logger.log(data=val_metrics, step=self.global_steps) if self.config.trainer.get('val_only', False): return # we start from step 1 self.global_steps += 1 last_val_metrics = None for epoch in range(self.config.trainer.total_epochs): for batch_dict in self.train_dataloader: metrics = {} timing_raw = {} batch: DataProto = DataProto.from_single_dict(batch_dict) # pop those keys for generation gen_batch = batch.pop(batch_keys=['input_ids', 'attention_mask', 'position_ids']) is_last_step = self.global_steps >= self.total_training_steps with _timer('step', timing_raw): # generate a batch with _timer('gen', timing_raw): gen_batch_output = self.actor_rollout_wg.generate_sequences(gen_batch) if self.config.algorithm.adv_estimator == AdvantageEstimator.REMAX: with _timer('gen_max', timing_raw): gen_baseline_batch = deepcopy(gen_batch) gen_baseline_batch.meta_info['do_sample'] = False gen_baseline_output = self.actor_rollout_wg.generate_sequences(gen_baseline_batch) batch = batch.union(gen_baseline_output) reward_baseline_tensor = self.reward_fn(batch) reward_baseline_tensor = reward_baseline_tensor.sum(dim=-1) batch.pop(batch_keys=list(gen_baseline_output.batch.keys())) batch.batch['reward_baselines'] = reward_baseline_tensor del gen_baseline_batch, gen_baseline_output batch.non_tensor_batch['uid'] = np.array([str(uuid.uuid4()) for _ in range(len(batch.batch))], dtype=object) # repeat to align with repeated responses in rollout batch = batch.repeat(repeat_times=self.config.actor_rollout_ref.rollout.n, interleave=True) batch = batch.union(gen_batch_output) # balance the number of valid tokens on each dp rank. # Note that this breaks the order of data inside the batch. # Please take care when you implement group based adv computation such as GRPO and rloo self._balance_batch(batch, metrics=metrics) # compute global_valid tokens batch.meta_info['global_token_num'] = torch.sum(batch.batch['attention_mask'], dim=-1).tolist() # recompute old_log_probs with _timer('old_log_prob', timing_raw): old_log_prob = self.actor_rollout_wg.compute_log_prob(batch) batch = batch.union(old_log_prob) if self.use_reference_policy: # compute reference log_prob with _timer('ref', timing_raw): ref_log_prob = self.ref_policy_wg.compute_ref_log_prob(batch) batch = batch.union(ref_log_prob) # compute values if self.use_critic: with _timer('values', timing_raw): values = self.critic_wg.compute_values(batch) batch = batch.union(values) with _timer('adv', timing_raw): # compute scores. Support both model and function-based. # We first compute the scores using reward model. Then, we call reward_fn to combine # the results from reward model and rule-based results. if self.use_rm: # we first compute reward model score reward_tensor = self.rm_wg.compute_rm_score(batch) batch = batch.union(reward_tensor) # we combine with rule-based rm reward_tensor = self.reward_fn(batch) batch.batch['token_level_scores'] = reward_tensor # compute rewards. apply_kl_penalty if available if self.config.algorithm.use_kl_in_reward: batch, kl_metrics = apply_kl_penalty(batch, kl_ctrl=self.kl_ctrl_in_reward, kl_penalty=self.config.algorithm.kl_penalty) metrics.update(kl_metrics) else: batch.batch['token_level_rewards'] = batch.batch['token_level_scores'] # compute advantages, executed on the driver process batch = compute_advantage(batch, adv_estimator=self.config.algorithm.adv_estimator, gamma=self.config.algorithm.gamma, lam=self.config.algorithm.lam, num_repeat=self.config.actor_rollout_ref.rollout.n) # update critic if self.use_critic: with _timer('update_critic_call', timing_raw): critic_output = self.critic_wg.update_critic(batch) # implement critic warmup if self.config.trainer.critic_warmup <= self.global_steps: # update actor with _timer('update_actor_call', timing_raw): actor_output = self.actor_rollout_wg.update_actor(batch) # NOTE: make sure you set blocking=False in update_actor and update_crtic in the worker class with _timer('update_actor_critic', timing_raw): critic_output = critic_output.get() critic_output_metrics = reduce_metrics(critic_output.meta_info['metrics']) metrics.update(critic_output_metrics) actor_output = actor_output.get() actor_output_metrics = reduce_metrics(actor_output.meta_info['metrics']) metrics.update(actor_output_metrics) # validate if self.val_reward_fn is not None and self.config.trainer.test_freq > 0 and \ (is_last_step or self.global_steps % self.config.trainer.test_freq == 0): with _timer('testing', timing_raw): val_metrics: dict = self._validate() if is_last_step: last_val_metrics = val_metrics metrics.update(val_metrics) if self.config.trainer.save_freq > 0 and (is_last_step or \ self.global_steps % self.config.trainer.save_freq == 0): with _timer('save_checkpoint', timing_raw): self._save_checkpoint() # collect metrics metrics.update(compute_data_metrics(batch=batch, use_critic=self.use_critic)) metrics.update(compute_timing_metrics(batch=batch, timing_raw=timing_raw)) # TODO: make a canonical logger that supports various backend logger.log(data=metrics, step=self.global_steps) if self.global_steps >= self.total_training_steps: pprint(f'Final validation metrics: {last_val_metrics}') return self.global_steps += 1