bniladridas commited on
Commit
08d09a1
·
1 Parent(s): a40db9a

Update README: rebrand to harpertokenSysMon, remove noise and emojis, add contact email

Browse files
Files changed (1) hide show
  1. README.md +18 -39
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Codium Windurf System Monitoring Dataset
3
  tags:
4
  - system-monitoring
5
  - time-series
@@ -11,17 +11,17 @@ language:
11
  - en
12
  ---
13
 
14
- # Codium Windurf System Monitoring Dataset (100% Open-Source)
15
 
16
  ## Dataset Summary
17
- The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset** designed for **time-series analysis, anomaly detection, and system performance optimization**. It captures **real-time system metrics** from macOS, providing a structured collection of CPU, memory, disk, network, and thermal sensor data. The dataset is ideal for **fine-tuning AI models** for predictive maintenance, anomaly detection, and system load forecasting.
18
 
19
  ## Dataset Features
20
- - **OS Compatibility:** macOS
21
- - **Data Collection Interval:** 1-5 seconds
22
- - **Total Storage Limit:** 4GB
23
- - **File Format:** CSV & Parquet
24
- - **Data Fields:**
25
  - `timestamp`: Date and time of capture
26
  - `cpu_usage`: CPU usage percentage per core
27
  - `memory_used_mb`: RAM usage in MB
@@ -33,17 +33,17 @@ The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset
33
  - `cpu_temp`: CPU temperature in °C
34
 
35
  ## Usage Examples
36
- ### **1️⃣ Load in Python**
37
  ```python
38
  from datasets import load_dataset
39
 
40
- dataset = load_dataset("bniladridas/codium-windurf-system-monitoring")
41
  df = dataset["train"].to_pandas()
42
 
43
  print(df.head())
44
  ```
45
 
46
- ### **2️⃣ Train an Anomaly Detection Model**
47
  ```python
48
  from sklearn.ensemble import IsolationForest
49
 
@@ -59,34 +59,13 @@ df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_
59
  ```
60
 
61
  ## Potential Use Cases
62
- ✅ **AI Fine-Tuning** for real-time system monitoring models
63
- ✅ **Time-Series Forecasting** of CPU & memory usage
64
- ✅ **Anomaly Detection** for overheating and system failures
65
- ✅ **Predictive Maintenance** for proactive issue detection
66
 
67
- ## Licensing & Contributions
68
- - **License:** MIT (100% Open-Source & Free)
69
- - **Contributions:** PRs are welcome! Open an issue for improvements.
70
-
71
- ## How to Upload to Hugging Face
72
- ### **1️⃣ Install Hugging Face CLI**
73
- ```bash
74
- pip install huggingface_hub
75
- huggingface-cli login
76
- ```
77
-
78
- ### **2️⃣ Push the Dataset**
79
- ```python
80
- from datasets import Dataset
81
- import pandas as pd
82
-
83
- # Load the dataset
84
- df = pd.read_csv("system_monitoring_dataset.csv")
85
- dataset = Dataset.from_pandas(df)
86
-
87
- # Upload to Hugging Face
88
- dataset.push_to_hub("bniladridas/codium-windurf-system-monitoring")
89
- ```
90
 
91
  ## Contact
92
- For questions or feedback, please contact bniladridas@gmail.com
 
1
  ---
2
+ title: harpertokenSysMon Dataset
3
  tags:
4
  - system-monitoring
5
  - time-series
 
11
  - en
12
  ---
13
 
14
+ # harpertokenSysMon Dataset
15
 
16
  ## Dataset Summary
17
+ This open-source dataset captures real-time system metrics from macOS for time-series analysis, anomaly detection, and predictive maintenance.
18
 
19
  ## Dataset Features
20
+ - OS Compatibility: macOS
21
+ - Data Collection Interval: 1-5 seconds
22
+ - Total Storage Limit: 4GB
23
+ - File Format: CSV & Parquet
24
+ - Data Fields:
25
  - `timestamp`: Date and time of capture
26
  - `cpu_usage`: CPU usage percentage per core
27
  - `memory_used_mb`: RAM usage in MB
 
33
  - `cpu_temp`: CPU temperature in °C
34
 
35
  ## Usage Examples
36
+ ### 1. Load in Python
37
  ```python
38
  from datasets import load_dataset
39
 
40
+ dataset = load_dataset("harpertoken/harpertokenSysMon")
41
  df = dataset["train"].to_pandas()
42
 
43
  print(df.head())
44
  ```
45
 
46
+ ### 2. Train an Anomaly Detection Model
47
  ```python
48
  from sklearn.ensemble import IsolationForest
49
 
 
59
  ```
60
 
61
  ## Potential Use Cases
62
+ AI Fine-Tuning for real-time system monitoring models
63
+ Time-Series Forecasting of CPU & memory usage
64
+ Anomaly Detection for overheating and system failures
65
+ Predictive Maintenance for proactive issue detection
66
 
67
+ ## Licensing
68
+ - License: MIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  ## Contact
71
+ For questions or feedback, please contact harpertoken@icloud.com