bniladridas
commited on
Commit
·
08d09a1
1
Parent(s):
a40db9a
Update README: rebrand to harpertokenSysMon, remove noise and emojis, add contact email
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
tags:
|
| 4 |
- system-monitoring
|
| 5 |
- time-series
|
|
@@ -11,17 +11,17 @@ language:
|
|
| 11 |
- en
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
## Dataset Summary
|
| 17 |
-
|
| 18 |
|
| 19 |
## Dataset Features
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
- `timestamp`: Date and time of capture
|
| 26 |
- `cpu_usage`: CPU usage percentage per core
|
| 27 |
- `memory_used_mb`: RAM usage in MB
|
|
@@ -33,17 +33,17 @@ The **Codium Windurf System Monitoring Dataset** is a **100% open-source dataset
|
|
| 33 |
- `cpu_temp`: CPU temperature in °C
|
| 34 |
|
| 35 |
## Usage Examples
|
| 36 |
-
###
|
| 37 |
```python
|
| 38 |
from datasets import load_dataset
|
| 39 |
|
| 40 |
-
dataset = load_dataset("
|
| 41 |
df = dataset["train"].to_pandas()
|
| 42 |
|
| 43 |
print(df.head())
|
| 44 |
```
|
| 45 |
|
| 46 |
-
###
|
| 47 |
```python
|
| 48 |
from sklearn.ensemble import IsolationForest
|
| 49 |
|
|
@@ -59,34 +59,13 @@ df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_
|
|
| 59 |
```
|
| 60 |
|
| 61 |
## Potential Use Cases
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
-
## Licensing
|
| 68 |
-
-
|
| 69 |
-
- **Contributions:** PRs are welcome! Open an issue for improvements.
|
| 70 |
-
|
| 71 |
-
## How to Upload to Hugging Face
|
| 72 |
-
### **1️⃣ Install Hugging Face CLI**
|
| 73 |
-
```bash
|
| 74 |
-
pip install huggingface_hub
|
| 75 |
-
huggingface-cli login
|
| 76 |
-
```
|
| 77 |
-
|
| 78 |
-
### **2️⃣ Push the Dataset**
|
| 79 |
-
```python
|
| 80 |
-
from datasets import Dataset
|
| 81 |
-
import pandas as pd
|
| 82 |
-
|
| 83 |
-
# Load the dataset
|
| 84 |
-
df = pd.read_csv("system_monitoring_dataset.csv")
|
| 85 |
-
dataset = Dataset.from_pandas(df)
|
| 86 |
-
|
| 87 |
-
# Upload to Hugging Face
|
| 88 |
-
dataset.push_to_hub("bniladridas/codium-windurf-system-monitoring")
|
| 89 |
-
```
|
| 90 |
|
| 91 |
## Contact
|
| 92 |
-
For questions or feedback, please contact
|
|
|
|
| 1 |
---
|
| 2 |
+
title: harpertokenSysMon Dataset
|
| 3 |
tags:
|
| 4 |
- system-monitoring
|
| 5 |
- time-series
|
|
|
|
| 11 |
- en
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# harpertokenSysMon Dataset
|
| 15 |
|
| 16 |
## Dataset Summary
|
| 17 |
+
This open-source dataset captures real-time system metrics from macOS for time-series analysis, anomaly detection, and predictive maintenance.
|
| 18 |
|
| 19 |
## Dataset Features
|
| 20 |
+
- OS Compatibility: macOS
|
| 21 |
+
- Data Collection Interval: 1-5 seconds
|
| 22 |
+
- Total Storage Limit: 4GB
|
| 23 |
+
- File Format: CSV & Parquet
|
| 24 |
+
- Data Fields:
|
| 25 |
- `timestamp`: Date and time of capture
|
| 26 |
- `cpu_usage`: CPU usage percentage per core
|
| 27 |
- `memory_used_mb`: RAM usage in MB
|
|
|
|
| 33 |
- `cpu_temp`: CPU temperature in °C
|
| 34 |
|
| 35 |
## Usage Examples
|
| 36 |
+
### 1. Load in Python
|
| 37 |
```python
|
| 38 |
from datasets import load_dataset
|
| 39 |
|
| 40 |
+
dataset = load_dataset("harpertoken/harpertokenSysMon")
|
| 41 |
df = dataset["train"].to_pandas()
|
| 42 |
|
| 43 |
print(df.head())
|
| 44 |
```
|
| 45 |
|
| 46 |
+
### 2. Train an Anomaly Detection Model
|
| 47 |
```python
|
| 48 |
from sklearn.ensemble import IsolationForest
|
| 49 |
|
|
|
|
| 59 |
```
|
| 60 |
|
| 61 |
## Potential Use Cases
|
| 62 |
+
AI Fine-Tuning for real-time system monitoring models
|
| 63 |
+
Time-Series Forecasting of CPU & memory usage
|
| 64 |
+
Anomaly Detection for overheating and system failures
|
| 65 |
+
Predictive Maintenance for proactive issue detection
|
| 66 |
|
| 67 |
+
## Licensing
|
| 68 |
+
- License: MIT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
## Contact
|
| 71 |
+
For questions or feedback, please contact harpertoken@icloud.com
|