--- title: harpertokenSysMon Dataset tags: - system-monitoring - time-series - anomaly-detection - predictive-maintenance - macOS license: mit language: - en --- # harpertokenSysMon Dataset ## Dataset Summary This open-source dataset captures real-time system metrics from macOS for time-series analysis, anomaly detection, and predictive maintenance. ## Dataset Features - OS Compatibility: macOS - Data Collection Interval: 1-5 seconds - Total Storage Limit: 4GB - File Format: CSV & Parquet - Data Fields: - `timestamp`: Date and time of capture - `cpu_usage`: CPU usage percentage per core - `memory_used_mb`: RAM usage in MB - `disk_read_mb`: Disk read in MB - `disk_write_mb`: Disk write in MB - `net_sent_mb`: Network upload in MB - `net_recv_mb`: Network download in MB - `battery_status`: Battery percentage (Mac only) - `cpu_temp`: CPU temperature in °C ## Usage Examples ### 1. Load in Python ```python from datasets import load_dataset dataset = load_dataset("harpertoken/harpertokenSysMon") df = dataset["train"].to_pandas() print(df.head()) ``` ### 2. Train an Anomaly Detection Model ```python from sklearn.ensemble import IsolationForest # Convert time-series to numerical format df["cpu_usage_avg"] = df["cpu_usage"].apply(lambda x: sum(x) / len(x)) # Train model model = IsolationForest(contamination=0.05) model.fit(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) # Predict anomalies df["anomaly"] = model.predict(df[["cpu_usage_avg", "memory_used_mb", "disk_read_mb", "disk_write_mb"]]) ``` ## Potential Use Cases AI Fine-Tuning for real-time system monitoring models Time-Series Forecasting of CPU & memory usage Anomaly Detection for overheating and system failures Predictive Maintenance for proactive issue detection ## Licensing - License: MIT ## Contact For questions or feedback, please contact harpertoken@icloud.com