File size: 82,269 Bytes
09262a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# DeepPurpose Deep Dive\n",
"## Tutorial 2: Training a Drug Property Prediction Model from Scratch for Assay Data\n",
"#### [@KexinHuang5](https://twitter.com/KexinHuang5)\n",
"\n",
"In this tutorial, we further extends the use cases of DeepPurpose to assay data where there are only drug information and its affinity score to the protein in the assay. \n",
"\n",
"Agenda:\n",
"\n",
"- Part I: Introduction to Assay Data\n",
"- Part II: Drug Property Prediction\n",
"\n",
"Let's start!"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from DeepPurpose import utils, dataset, CompoundPred\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Part I: Introduction to Assay Data\n",
"\n",
"Drug-target interaction measures the binding of drug molecules to the protein targets. In drug discovery process, we usually already have a protein of interest and traditionally, high-throughput screening assay is performed on a potential drug library to get affinity scores. But it is expensive and time-consuming, and it cannot go through a huge amount of molecule candidates, which means it potentially can miss a drug candidate. Machine learning can provide an important role to facilitate this process. One way to do it is to narrow down the search space for HTS. Here are the steps:\n",
"\n",
"1. For a target protein of interest, conduct an initial high-throughput screening assay on a set of drugs (ideally, structurally diverse), where the set size depends on the time and cost constraint.\n",
"\n",
"2. Train a deep learning model using DeepPurpose and select a threshold to control the false positive rate (e.g., < 0.02).\n",
"\n",
"3. Apply the trained model on a large set of drugs. Select the set of drugs that meet the threshold and send to HTS.\n",
"\n",
"Through the above three steps, it greatly cuts down the time of screening and also reduces the likelihood of missing a potential drug candidate. Now, we show the step 2: using DeepPurpose to train a deep learning model for screening the assay. \n",
"\n",
"(**Data**) DeepPurpose takes into an array of drug's SMILES strings (**d**) and an array of label (**y**), which can either be binary 0/1 indicating interaction outcome or a real number indicating affinity value. Note **y**\\[0\\] is the score for **d**\\[0\\].\n",
"\n",
"Besides transforming into numpy arrays through some data wrangling on your own, DeepPurpose also provides two ways to help data preparation. \n",
"\n",
"The first way is to read from local files. For example, to load drug assay data, we expect a file.txt where each line is a drug SMILES string, followed by an affinity score or 0/1 label:\n",
"\n",
"```CC1=C...C4)N 7.365```\n",
"\n",
"Then, we use ```dataset.read_file_training_dataset_bioassay``` to load it."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Drug 1: CCOC1=CC=C(C=C1)N2C=CC(=O)C(=N2)C(=O)NC3=CC=C(C=C3)S(=O)(=O)NC4=NC=CC=N4\n",
"Score 1: 0.0\n"
]
}
],
"source": [
"X_drugs, X_targets, y = dataset.read_file_training_dataset_bioassay('./toy_data/AID1706.txt')\n",
"print('Drug 1: ' + X_drugs[0])\n",
"print('Score 1: ' + str(y[0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DeepPurpose also provides data loaders to ease preprocessing. For example, in this tutorial, we will use the HIV screening data. We can use ```dataset.load_HIV```. It will download, preprocess to the designated data format. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Dataset already downloaded in the local system...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Drug 1: CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)=[O+]2\n",
"Score 1: 0\n"
]
}
],
"source": [
"X_drugs, y, drugs_index = dataset.load_HIV(path = './data')\n",
"print('Drug 1: ' + X_drugs[0])\n",
"print('Score 1: ' + str(y[0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For more detailed examples and tutorials of data loading, checkout this [tutorial](./DEMO/load_data_tutorial.ipynb).\n",
"\n",
"## Part II: Drug Property Prediction Framework\n",
"\n",
"DeepPurpose provides a simple framework to do drug property prediction research using 8 encoders for drugs. It basically consists of the following steps, where each step corresponds to one line of code:\n",
"\n",
"- Encoder specification\n",
"- Data encoding and split\n",
"- Model configuration generation\n",
"- Model initialization\n",
"- Model Training\n",
"- Model Prediction and Repuposing/Screening\n",
"- Model Saving and Loading\n",
"\n",
"Let's start with data encoding! \n",
"\n",
"(**Encoder specification**) After we obtain the required data format from Part I, we need to prepare them for the encoders. Hence, we first specify the encoder to use for drug and protein. Here we try MPNN for drug.\n",
"\n",
"If you find MPNN is too large for the CPUs, you can try smaller encoders by uncommenting the last line:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#drug_encoding = 'MPNN'\n",
"drug_encoding = 'Morgan'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that you can switch encoder just by changing the encoding name above. The full list of encoders are listed [here](https://github.com/kexinhuang12345/DeepPurpose#encodings). \n",
"\n",
"(**Data encoding and split**) Now, we encode the data into the specified format, using ```utils.data_process``` function. It specifies train/validation/test split fractions, and random seed to ensure same data splits for reproducibility. This function also support data splitting methods such as ```cold_drug```, which splits on drug for model robustness evaluation to test on unseen drug/proteins.\n",
"\n",
"The function outputs train, val, test pandas dataframes."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Drug Property Prediction Mode...\n",
"in total: 41127 drugs\n",
"encoding drug...\n",
"unique drugs: 41127\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"RDKit WARNING: [09:01:53] WARNING: not removing hydrogen atom without neighbors\n",
"RDKit WARNING: [09:01:53] WARNING: not removing hydrogen atom without neighbors\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Done.\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SMILES</th>\n",
" <th>Label</th>\n",
" <th>drug_encoding</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)...</td>\n",
" <td>0</td>\n",
" <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SMILES Label \\\n",
"0 CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)... 0 \n",
"\n",
" drug_encoding \n",
"0 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train, val, test = utils.data_process(X_drug = X_drugs, y = y, drug_encoding = drug_encoding,\n",
" split_method='random',frac=[0.7,0.1,0.2],\n",
" random_seed = 1)\n",
"train.head(1)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.unique(y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(**Model configuration generation**) Now, we initialize a model with its configuration. You can modify almost any hyper-parameters (e.g., learning rate, epoch, batch size), model parameters (e.g. hidden dimensions, filter size) and etc in this function. The supported configurations are listed here in this [link](https://github.com/kexinhuang12345/DeepPurpose/blob/e169e2f550694145077bb2af95a4031abe400a77/DeepPurpose/utils.py#L486).\n",
"\n",
"For the sake of example, we specify the epoch size to be 3, and set the model parameters to be small so that you can run on both CPUs & GPUs quickly and can proceed to the next steps. For a reference parameters, checkout the notebooks in the DEMO folder."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"config = utils.generate_config(drug_encoding = drug_encoding, \n",
" cls_hidden_dims = [1024,1024,512], \n",
" train_epoch = 3, \n",
" LR = 0.001, \n",
" batch_size = 128,\n",
" hidden_dim_drug = 128,\n",
" mpnn_hidden_size = 128,\n",
" mpnn_depth = 3\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(**Model initialization**) Next, we initialize a model using the above configuration."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<DeepPurpose.CompoundPred.Property_Prediction at 0x7fe9bbcf5090>"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = CompoundPred.model_initialize(**config)\n",
"model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(**Model Training**) Next, it is ready to train, using the ```model.train``` function! If you do not have test set, you can just use ```model.train(train, val)```. "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Let's use CPU/s!\n",
"--- Data Preparation ---\n",
"--- Go for Training ---\n",
"Training at Epoch 1 iteration 0 with loss 0.69454. Total time 0.0 hours\n",
"Training at Epoch 1 iteration 100 with loss 0.11414. Total time 0.00138 hours\n",
"Training at Epoch 1 iteration 200 with loss 0.17790. Total time 0.0025 hours\n",
"Validation at Epoch 1 , AUROC: 0.78535 , AUPRC: 0.38694 , F1: 0.37810\n",
"Training at Epoch 2 iteration 0 with loss 0.11183. Total time 0.00333 hours\n",
"Training at Epoch 2 iteration 100 with loss 0.10962. Total time 0.00472 hours\n",
"Training at Epoch 2 iteration 200 with loss 0.11443. Total time 0.00611 hours\n",
"Validation at Epoch 2 , AUROC: 0.82523 , AUPRC: 0.47837 , F1: 0.46601\n",
"Training at Epoch 3 iteration 0 with loss 0.08445. Total time 0.00666 hours\n",
"Training at Epoch 3 iteration 100 with loss 0.14978. Total time 0.00805 hours\n",
"Training at Epoch 3 iteration 200 with loss 0.11269. Total time 0.00944 hours\n",
"Validation at Epoch 3 , AUROC: 0.84940 , AUPRC: 0.52009 , F1: 0.45989\n",
"--- Go for Testing ---\n",
"Testing AUROC: 0.7718187151198811 , AUPRC: 0.4290818621138395 , F1: 0.4144578313253012\n",
"--- Training Finished ---\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEaCAYAAAAG87ApAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABC2klEQVR4nO3dd3gU5fbA8e9JJXRIBBGkiEgRKYqAFymiIu0idrCXqyIXwYaiWBC7IgrSuYoFBZX7U7lUQQEr0kFFpIkQpEgLNSHl/P6YCSwhZRKyLTmf59kn2ZnZmTOzu3P2fd+Z9xVVxRhjjPEqItgBGGOMCS+WOIwxxuSLJQ5jjDH5YonDGGNMvljiMMYYky+WOIwxxuSLJY5iRkR+FZF2wY4jVIjIEyLynyBt+10ReT4Y2y5sInKTiHxZwNfaZzLMWOIIIhHZJCJHROSgiGx3TySl/blNVT1XVef7cxuZRCRWRF4Skc3ufq4Tkf4iIoHYfjbxtBORRN9pqvqiqv7LT9sTEekrIr+IyCERSRSRT0XkPH9sr6BEZJCITDyVdajqh6rawcO2TkqWBf1MikiMG/s69/huEpF3RKRmftdl8scSR/D9U1VLA02ApsDjwQ0n/0QkKodZnwKXAp2BMsAtwD3AMD/EICISap/nYUA/oC9QETgH+BzoUtgbyuU98LsgbnsK0A24ESgHNAaW4nzm8iWYxy8sqao9gvQANgGX+Tx/FZju87wl8AOwD1gJtPOZVxGYAPwF7AU+95nXFVjhvu4HoFHWbQJnAEeAij7zmgK7gGj3+Z3Ab+76ZwM1fJZV4N/AOuCPbPbtUiAZODPL9BZAOnC2+3w+8BKwCNgPfJElptyOwXzgBeB7d1/OBu5wYz4AbATudZct5S6TARx0H2cAg4CJ7jI13f26DdjsHouBPtuLA95zj8dvwKNAYg7vbR13P5vn8v6/C4wEprvx/gTU9pk/DNjiHpelQGufeYNwTpwT3fn/ApoDP7rHahswAojxec25wBxgD7ADeALoCBwFUt1jstJdthzwtruercDzQKQ773b3mL8B7Hbn3Q58584Xd95ON7afgYY4PxpS3e0dBP6X9XsARLpxbXCPyVKyfIbc5S5z38+T5uXy/cruvb7Lfa+/AWYCfbKsYyVwtft/PZ/j9ztwfbDPIcF6BD2A4vzI8oWp5n7BhrnPq7pfys44JcPL3eenufOnAx8DFYBooK07van7hW3hfglvc7cTm802vwbu9onnNWCM+/+VwHqgPhAFPAn84LOsul+iikBcNvv2MrAgh/3+k+Mn9Pnuiakhzsn9vz5f7ryOwXz3S3+uG2M0zq/52jgnr7bAYeB8d/l2ZDnR53AyGY+TJBoDKUB9331yj3k1YFXW9fmstxfwZx7v/7vu/jR34/8QmOwz/2Yg3p33MLAdKOETdyrQ3T02ccAFOIk2yt2X34AH3OXL4CSBh4ES7vMWWY+Bz7Y/A8a670klnMSe+Z7dDqQB97vbiuPExHEFzgm/vPs+1Aeq+Ozz87l8D/rjfA/quq9tDMTn5/OV3Xpzea/fd/cxDrgV+N5n+QY4STjWXWYLzg+TKI7/yGoQ7PNIMB6hVrQvjj4XkQM4H8qdwDPu9JuBGao6Q1UzVHUOsAToLCJVgE5AL1Xdq6qpqrrAfd09wFhV/UlV01X1PZyTX8tstv0R0BOcqh6ghzsNnBPfS6r6m6qmAS8CTUSkhs/rX1LVPap6JJt1J+CcqLKzzZ2f6QNV/UVVDwFPAdeLSGRux8Dnte+q6q+qmuYeh+mqukEdC4AvgdY5xJGTZ1X1iKquxPnF2didfj3wonvME4HhuawjPpf99/WZqi5yj/GHOFWWAKjqRFXd7e7b6zgnsLo+r/1RVT93j80RVV2qqgvd5TfhnPjbust2Bbar6uuqmqyqB1T1p+wCEpHKOMf4AVU9pKo7cUoQPXwW+0tV33K3lfX9T8VJTPUAcT9DXo4FOCWnJ1X1d/c9XKmqu7NZzuvxzcsgdx+P4CRL38/4TcD/qWoKzvHbpKoT3H1ejvMj57pCiCHsWOIIvu6qWgbn13A9jp9QawDXici+zAdwMVAFOBPYo6p7s1lfDeDhLK87E6daJqv/Ahe5iagNTjXOtz7rGeazjj04vwCr+rx+Sy77tcuNNTtV3PnZredPnJJDArkfg2xjEJFOIrJQRPa4y3fmxCTlxXaf/w8DmRcsnJFle7nt/25y3n8v20JEHhGR30Qkyd2Xcpy4L1n3/RwRmeZeaLEfJ9lnLn8mTvWPFzVw3oNtPsd9LE7JI9tt+1LVr3GqyUYCO0VknIiU9bhtr3F6Pb55ObYfqnoApySfmSB74iRzcI5JiyyfxZuA0wshhrBjiSNEuL+O3wWGuJO24PwSL+/zKKWqL7vzKopI+WxWtQV4IcvrSqrqpGy2uRfnF/kNOA2Mk1VVfdZzb5b1xKnqD76ryGWX5uJ80c70nSgiLXBODl/7TPZdpjrOL9ZdeRyDk2IQkVicZDgEqKyq5YEZOAkvr3i92IZTRZVd3Fl9BVQTkWYF2ZCItMZpQ7keqODuSxLH9wVO3p/RwBqgjqqWxWkryFx+C3BWDpvLup4tOKXUBJ/jXlZVz83lNSeuUHW4ql6AU91zDk4VVJ6vc7ddO49lwPl8NReRarkscwgo6fM8u5N81ngmAT1F5CKcKr15PnEtyPJZLK2q93mItcixxBFa3gQuF5HGOI2e/xSRK0QkUkRKuJeTVnOL/TOBUSJSQUSiRaSNu47xQC8RaeFeaVRKRLqISJkctvkRTt3utRyvpgIYAzwuIucCiEg5EfFcLFfVuTgnz/+KyLnuPrR092u0qq7zWfxmEWkgIiWBwcAUVU3P7RjksNkYnOqcv4E0EekE+F4iugOIF5FyXvcji09wjkkFEakK9MlpQXf/RgGT3Jhj3Ph7iMgAD9sqg9OO8DcQJSJPA3n9ai+D0xh9UETqAb4ntWlAFRF5QJzLpMu4SRyc41Iz86o09/P1JfC6iJQVkQgRqS0ibfFARC50P3/ROCfvZJzSbOa2ckpgAP8BnhOROu7nt5GIxGddyP18zQE+E5ELRCTK3adeInKnu9gKoIf7/WiG8xnPywyc0sVg4GNVzYx7GnCOiNziri/a3c/6HtZZ5FjiCCGq+jdOY93TqroFp4H6CZyTxxacX22Z79ktOL/M1+C0jTzgrmMJcDdOVcFenAbu23PZ7FScK4C2u3X6mbF8BrwCTHarPX7BaVfJj2twfrHNwrmKZiLOlTr3Z1nuA5zS1nacX3l93RjyOgYncKsa+uKc4PfilKKm+sxfg/OLcqNb3ZBd9V1uBgOJwB84v3in4Pwyz0lfjlfZ7MOpgrkK+J+Hbc3GOW5rcarvksm9agzgEZx9PoDzA+LjzBnusbkc+CfOcV4HXOLO/tT9u1tElrn/34qTiFfjHMspeK8aKutuf68b+26cCy/Aef8buMf/82xeOxTn/fsSJwm+jdNwnZ1rcU70H+OUxn4BmuG8N+C0l9V243iWE38YZcttz/g/nKu2PvKZfgDnR0gPnCsZt+N8P2LzWmdRJMdrJowJPBGZj3OlS1Du3j4VInIf0ENVPf0SN6aosBKHMR6JSBURaeVW3dTFubT1s2DHZUyg2d2SxngXg3N1US2cqqfJOO0YxhQrVlVljDEmX6yqyhhjTL6EfVVVQkKC1qxZM9hhGGNMWFm6dOkuVT2tIK8N+8RRs2ZNlixZEuwwjDEmrIjInwV9rVVVGWOMyRdLHMYYY/LFEocxxph8scRhjDEmXyxxGGOMyRdLHMYYY/IlYIlDRN4RkZ0i8ksO80VEhovIehFZJSLnByo2Y4wx3gWyxPEu0DGX+Z1wuveugzP86egAxGSMMcXO0aPpp/T6gN0AqKrfiEjNXBa5EnjfHYFuoYiUF5Eq+Rir2BhjTDbumLCIeb//DcDeeVs4uuPwKa0vlO4cr8qJA9UkutNOShwicg9OqYTq1asHJDhjjAknvsnCV3RCHPuX7jyldYdS4vBMVccB4wCaNWtm3fsaY4wra8I4uusIR3cc5p9X12PCHc1RVf78M4latZ4p8DZCKXFsBc70eV7NnWaMMSYPWRNGRmo65X9P4rfZm4iMFAa+0RUAEaFmzfKntK1QShxTgT4iMhloASRZ+4YxxuRc7ZSTOimw4Ys/+PmPfQDcddcFxMfnNHR7/gUscYjIJKAdkCAiicAzQDSAqo7BGXS+M7AeOAzcEajYjDEmlHlNGs0rlUF/3MGUKasBaNSoMmPGdOGii87M45X5E8irqnrmMV+BfwcoHGOMCRleSxSbXu6S6/zu3SfzxRe/U7JkNIMHt6Nfv5ZERRX+XRehVFVljDHFkpekcUnd7MdcSkvLOJYcXnnlMqKjI3n99Q5Ur16uUGP0ZYnDGGMCJK+SRV4lCl9JSck8+eTXrF27h1mzbkJEqFs3gU8/va4wQs2VJQ5jjPGT/DRq51SiyEpV+fTT1TzwwCy2bTtIZKSwYsV2mjatciqh5oslDmOM8ZPsksYldU9jwh3NC7S+DRv20KfPTGbNWg/ARRdVY8yYrjRqVPmU4swvSxzGGFNIciph5KcKKidDhvzAU0/NIzk5jfLlS/DKK5fxr3+dT0SEnPK688sShzHGeJTf+ynAexVUXg4fTiU5OY1bbmnEkCEdqFSpVKGstyAscRhjjAdek8apVEX5+vvvQ/z++24uvtjpj++xx1rRrl1N2rSpccrrPlWWOIwxJg++SaOwEkNOMjKUd95ZzqOPziEqKoI1a/pQsWIcsbFRIZE0wBKHMcZkK7sShr+Txi+/7KRXr2l8/73TUfjll5/F4cOpVKxYeN2FFAZLHMYY4yOnKil/Jo1Dh44yePAChg5dSFpaBpUrl+LNNztyww3nIhL4xu+8WOIwxhR7wUgWvq699lNmzVqPCPTu3YwXXriU8uVL+H27BWWJwxhTLOT3ZrxAJIxMjz3Wih07DjJ6dBdatKgWsO0WlCUOY0yRUZDLZTMFKlmkpWXw1ls/sWnTPoYN6wRAu3Y1WbLknqDck1EQljiMMUWCl6QR6JJEVosWbeXee6exYsV2AO655wLOPbcSQNgkDbDEYYwpIgJ1uWxB7NuXzBNPfMWYMUtQhRo1yjFiROdjSSPcWOIwxoS0/FY/hVrSmDz5Fx54YBY7dhwiKiqChx++iKeeakOpUjHBDq3ALHEYY4LiVNojclJY3XsUpi+/3MCOHYdo1epMRo/uwnnnBbZDQn+wxGGMCbj8Jo1QrH7KSUpKGlu3HuCssyoA8Oqrl9O6dXVuu61JWLVj5MYShzEm4EK5PeJUfP31H9x333QiIoSVK3sRExNJQkJJ7rijabBDK1SWOIwxAZFdKaOoJI0dOw7yyCNzmDhxFQD16iWQmLj/WKmjqLHEYYzxm9yqpEKxPSK/MjKU8eOXMmDAV+zbl0yJElE8+WRr+vdvRUxMZLDD8xtLHMaYAivKbRVeXHXVx0yd+jsAV1xRm5EjO1O7dsUgR+V/ljiMMXkKhzuyg+Hqq+uxaNFWhg3ryHXXNQjJDgn9wRKHMSZXeSWNopwYspo69XcSE/fTu/eFANx6a2Ouvro+ZcrEBjmywLLEYUwxVdyrmfJj8+Yk+vadyRdf/E5sbCQdO57NWWdVQESKXdIASxzGFDsFHTe7OCaN1NR0hg//iWeemc+hQ6mUKRPD88+3p0aNcsEOLagscRhTxOV1ZVNxTAheLFyYyL33TmPVqh0AXHddA9544wqqVi0b5MiCzxKHMUVEKI83EY6eemoeq1btoFat8owY0ZnOnesEO6SQYYnDmDBS0KubLFHkTVU5cOAoZcs6bRYjRnTi/fdXMnBgG0qWjA5ydKHFEocxYcBrwrAEUTC//76L3r1nIAJz5tyCiFC3bgIvvHBpsEMLSZY4jAkRlhwCLzk5jZde+paXX/6eo0fTiY+PY9OmfdSqVTS7CiksljiMCQHhMHpdUTNnzgZ6957B+vV7ALjzzia8+urlxMeXDHJkoc9z4hCR84B7gdrAnaq6TUS6A3+q6nKP6+gIDAMigf+o6stZ5lcH3gPKu8sMUNUZXmM0Jhz5Jg1LDv6nqtx111QmTFgBQIMGpzFmTBdat64R3MDCiKfEISIdgKnATKA9EOfOqg3cDnT3sI5IYCRwOZAILBaRqaq62mexJ4FPVHW0iDQAZgA1vcRoTCizEkXoEBFq1ixPXFwUTz/dloceuqhId0joD15LHM8BD6nqKBE54DN9PvCwx3U0B9ar6kYAEZkMXAn4Jg4FMi+SLgf85XHdxoQEu+opNK1YsZ1t2w7QqZNzSe1jj7XillsaWVtGAXlNHA1xfv1ntQfw2hVkVWCLz/NEoEWWZQYBX4rI/UAp4LLsViQi9wD3AFSvXt3j5o3xL+vTKfQcOJDCM8/MZ9iwn4iPj2PNmj5UrBhHbGyUJY1T4DVx7ME58W/KMv18nARQWHoC76rq6yJyEfCBiDRU1QzfhVR1HDAOoFmzZlqI2zemQKydIrSoKp9/voa+fWeRmLifiAjhxhvPIzo6ItihFQleE8dHwGsicj1OdVKUiLQFhgATPK5jK3Cmz/Nq7jRfdwEdAVT1RxEpASQAOz1uw5hCZR0Bhp8//9xHnz4zmTZtLQDNmp3B2LFdOf/8KkGOrOjwmn6fBP4A/gRK47RLfA18B7zgcR2LgToiUktEYoAeOA3uvjYDlwKISH2gBFCwQQCMOUWWNMKPqnLNNZ8wbdpaypaNZcSITixceJcljULmqcShqqnATSLyFE71VASwXFXXed2QqqaJSB9gNs6ltu+o6q8iMhhYoqpTcRrax4vIgzglm9tV1aqiTEDklCgsIYS+jAwlIkIQEYYM6cCYMUt4440rqFKlTLBDK5LEy3lZRJ4Ghqjq4SzT44D+qjrYT/HlqVmzZrpkyZJgbd4UEZY0wtPu3YcZMGAuAOPHdwtyNOFFRJaqarMCvdZj4kgHqqjqzizT44Gdqhq0i6AtcZhTkTVhWKIID6rK+++v5JFH5rBr12FiYiLZsKEv1apZl+denUri8No4LjhVR1k1xbniypiwkl0Jw5JGePjtt7+5777pLFjwJwDt2tVk9OguljQCKNfE4d7sp+5jo4j4Jo9InMbrMf4Lz5jCY9VR4U1VefrpebzyyvekpmaQkFCS11/vwC23NEJEgh1esZJXiaMPTmnjHWAgkOQz7yiwSVV/9FNsxhQqK2GENxFh69YDpKZmcPfd5/Pyy5dRsWJc3i80hc5rG0db4Af36qqQYm0cJqu8LqPd9HKXAEZjTsVffx1g167DNGpUGYBduw7z+++7aNXKeow4VX5v41DVBT4bOx2IyTJ/c0E2bkxh89Lthwl96ekZjB69hIEDv6Zq1TKsWNGLmJhIEhJKkpBgSSPYvPaOWxZ4C7ieLEnDZV1LmoDLLUlYNVT4WrZsG/feO40lS5w+Ttu0qcH+/SkkJNg4GaHC61VVrwONcbpP/z/gTpy+q/rhvXdcY06ZdU9edO3fn8JTT33NiBGLychQqlUry/DhHenevZ41focYr4mjE9BTVb917+lYqqofi8g2nMGdpvgtQlPsWcmi6FNV2rSZwMqVO4iMFB56qCWDBrWjTJnYYIdmsuE1cZTH6acKnCur4oH1wI/Afwo/LGMcdr9F8SAiPPhgS0aNWsLYsV1p0uT0YIdkcuE1cWwAzsLphPA3oIeILAKuxm4ANH5gd3QXbUePpjN06I9ERgr9+7cC4NZbG3PzzY2IjLSuz0Od18TxLtAIZ8S/l4FpOPd4ROC0cxhTqCxpFF3ffvsnvXpNZ/Xqv4mNjeTWWxtTuXJpRITISGvLCAdeL8d9w+f/r0WkHtAMWKeqP/srOFO8ZFctZfdcFB27dh3m0UfnMGHCCgDq1KnIqFFdqFy5dHADM/nmtcRxAve+jc0AItJDVScXalSm2Mir4duEP1Xl3XdX0L//HHbvPkJMTCSPP34xAwZcTIkSBToFmSDL810TkSigLpCqqmt9pncHBrvzLHEYz+wqqeJn4sSf2b37CO3b12LUqM7UrZsQ7JDMKcirk8MGOO0ZNdznXwC9cBLF+ThXVFldgvHMrpIqHg4fTiUpKZkqVcogIowa1ZnFi//ippvOs3syioC8Shwv4wwZ2xe4CbgBaIAzBvmVqnrAv+GZcGc90hY/M2eu49//nsFZZ1VgzpxbEBHq1k2wUkYRklfiaA50VtVlIvIdTuIYoqp274bJkyWN4mXr1v088MBspkxZDUCZMrHs3n3EugopgvJKHJWArQCquk9EDgPf+D0qE3as3aL4Sk/PYOTIxTz55NccOHCUUqWiGTz4Evr2bUFUlN2TURTllTgUyPB5ngGEXNfqxv+89BGVHUsaRVtGhtK27bt8//0WALp3r8ewYR2pXr1ckCMz/pRX4hBOHPmvNLAqy0iAqKqN2VgE5TdZWJIofiIihA4darN5cxIjRnSmW7e6wQ7JBECuAzmJyG1eVqKq7xVaRPlkAzkVLqtyMrlRVT755FeioiK45poGAKSkpJGamkHp0tmNuGBCld8GcgpmQjCBZ5fKmtxs2LCH3r1n8OWXGzjttJK0b1+LChXiiI2NItY6sS1W7LbNYsyuejJepKSk8dprP/DCC9+SnJxGhQoleOGF9pQrVyLYoZkgscRRjFnSMHmZP38T9903nTVrdgFwyy2NGDKkA5UqlQpyZCaYLHEY60jQZCs9PYPevZ2kUbduPKNHd+GSS2oFOywTAixxFEMFvbTWFH0ZGUpycholS0YTGRnB6NFd+OabP3n00VbExtrpwjjsk1CM5NT4bQzAzz/voFev6dSrF8/bb18JQNu2NWnbtmZwAzMhx3PiEJHewL+BWkBDVd0oIgOAjar6ib8CNN7lpyRhbRkm06FDRxk8eAFDhy4kLS2DP/7Yy969R6hQIS7YoZkQ5SlxiMgDwKPAKzgdH2baijMSoCWOIPOaNCxhGF//+9/v9Okzk82bkxCB3r2b8cILl1K+vF0xZXLmtcTRC7hbVaeLyPM+05cB5xZ+WCYvdimtORVpaRnccMMU/u//fgOgSZPTGTu2K82bVw1yZCYceE0cNYBfspmeClh51s+sNGEKW1RUBOXKxVK6dAzPPXcJffo0tw4JjWdeE8dGnIGb/swyvTOw2uvGRKQjMAyIBP6jqi9ns8z1wCCcDhZXquqNXtdf1OSVMCxRmPz46adEAFq0qAbAa69dzuDBl1CtmnU1Z/LHa+IYAowQkZI4HR9eJCK34LR73OllBSISCYwELgcSgcUiMlVVV/ssUwd4HGilqntFpJL3XQl/1k+U8Yd9+5J5/PG5jB27lHr1ElixohcxMZHEx9s4GaZgPCUOVZ3gjj3+IlAS+AD4C+irqh973FZzYL2qbgQQkcnAlZxYYrkbGKmqe93t7vS47rBmCcP4g6oyadIvPPTQbHbsOERUVATdutUlPT0Dp9BvTMF4vhxXVccD40UkAYgowEm9KrDF53ki0CLLMucAiMj3OJ/sQao6K5/bCVle2iosUZjCsG7dbnr3nsHcuRsBaNXqTMaM6UrDhsWqEG/8xOvluG8CH6jqUlXd5ed46gDtgGrANyJynqruyxLPPcA9ANWrV/djOIXH2itMoKSmptO+/fskJu6nYsU4Xn31Mu64oykRERLs0EwR4bXE0RzoKyK/AxOBD1V1Uz63tRU40+d5NXear0TgJ1VNBf4QkbU4iWSx70KqOg4YB854HPmMw2+sRGGCSVUREaKjI3nhhfbMm7eJV1+9jNNOsw4JTeHKdSCnExYUOQu40X3UBX7ESSIfZ7ZJ5PH6KGAtcClOwlgM3Kiqv/os0xHoqaq3uVViy4Emqro7p/UGeiCnU+nnyZKG8YcdOw7yyCNzOOecijz1VNtgh2PChN8GcvLlNmo/DzwvIufjJJAngTfwcC+HqqaJSB9gNk77xTuq+quIDAaWqOpUd14HEVkNpAP9c0sagWJdeZhQlJGhjB+/lAEDvmLfvmTKly/BAw+0pEwZG1XJ+FdBOzmMBmKBGJwTvCeqOgOYkWXa0z7/K/CQ+wgZNiqeCTUrV26nV6/pLFzo3JvRsePZjBzZ2ZKGCYj8dHJ4DnATTkmjBjAPeBj4P/+EFhrumLDo2P82boUJttTUdB5//CvefHMh6elKlSqlGTasI9de2wARa/w2geH1qqolQFNgBTAKmKSq2/0YV8jILG1Y9+MmFERFRbB8+XYyMpT772/Oc89dYkO4moDzWuKYDdyiqr/5M5hQkrVdw6qmTLBs3pxEenoGtWpVQEQYM6YLSUkpNGt2RrBDM8WUp17NVHVgcUoacGK7hpU2TDCkpqYzZMgP1K8/krvv/h+ZV0DWqRNvScMEVY4lDhEZDjyuqofc/3Okqn0LPbIgsnYNE2w//riFXr2ms2rVDgAqVozj8OFUSpWKCXJkxuReVXUeztVTmf8XG9auYYJl794jDBgwl3HjlgFQq1Z5Ro7sTKdOdYIcmTHH5Zg4VPWS7P4vyqxdwwRTSkoaTZqMZfPmJKKjI+jf/x8MHNiGkiWj836xMQHkqY1DRJ52u1TPOj1ORJ7O7jXhyNo1TDDFxkZx111NadOmBitW9OKFFy61pGFCkqcuR0QkHaiStUdcEYkHdqpq0PpoLqwuR3xLG9auYQIhOTmNl176lrp1E7jxRqc2OC0tg8hIsXsyjN8FossRwRmRL6umwJ6CbDjUWLuGCaQ5czbQu/cM1q/fQ6VKpbjqqnrExUXb8K0mLOSaOETkAE7CUGCjiPgmj0igBDDGf+H5V3Z9UFm7hvGn7dsP8tBDs5k06RcAzj33NMaM6UpcnFVJmfCRV4mjD05p4x1gIJDkM+8osElVf/RTbH6VXdKw0obxl/T0DMaOXcoTT3xFUlIKcXFRPPNMWx588CJiYmw0PhNeck0cqvoegIj8AfzgjpMR9nyThnVYaAIhPV15661FJCWl0LlzHUaM6EStWhWCHZYxBZLbDYAVVTWz/eJnoExODXY+y4UFSxomEA4cSCE9XSlfvgQxMZGMH/9Pduw4yNVX17fGbxPWcitx/C0imVdS7SL7xvHMRvOwKWv73hVuScP4g6ry2Wdr6Nt3JldcUZu3374SgIsvDo9hjo3JS26Joz3Hr5gK+xsAs7ZpWHuG8YdNm/Zx//0zmTZtLQC//PI3yclplChR0KFvjAk9ud05viC7/8NV1qRhpQ1TmFJT0xk69EeefXYBR46kUbZsLC++2J5evZoRGWmX2Jqixet4HA2AdFX93X1+OXAb8Cvwqqp6HgUw0LKWNOzmPlPYDh9OpWXL//Dzz879sT16NGTo0A5UqVImyJEZ4x9efwq9g3OzHyJyJvAFUBH4N8445CHLqqeMv5UsGU2zZmdQu3YFZs++mUmTrrGkYYo0rxWv9YBl7v/XAj+pamcRuQSYADzuj+AKk5U0TGFRVd5/fyW1a1c81uD9xhtXEBMTaTfymWLBa+KIxLnhD+BSYIb7/wagcmEHVVh8r6AypjD89tvf3HffdBYs+JP69RNYsaIXMTGRNnyrKVa8VlX9AtwnIq1xEscsd3pVnEt1Q5L1P2UKy5EjqTz55Nc0bjyGBQv+5LTTSvL44xcTHW0N36b48VrieAz4HHgEeE9Vf3andwNC/me9XUFlTsWsWev5979nsHHjXgDuvvt8Xn75MipWjAtyZMYEh6fEoarfiMhpQFlV3eszayxw2C+RnYLs+qEypiAOHjzKLbd8xq5dh2nYsBJjxnShVSu7kc8Ub57vSlLVdBE5IiINce4W36Cqm/wW2SmwK6nMqUhPzyAjQ4mOjqR06RiGDetIYuJ+HnywJdHRYdNJgjF+4/U+jijgJZzecmNwuhpJEZG3gIGh2vmhXUll8mvp0r+4995pXHllXZ56qi3AsUGWjDEOry17rwI3A72Ac4A6wH3ALTgJxZiwtn9/Cv36zaR58/+wdOk2PvhgFampIXtfqzFB5bWq6kbgTlWd4TNtg4j8DfwHp9E8JNgluCY/VJUpU1bTr98stm07SGSk8NBDLXn22UusWsqYHHhNHOVw7tnIagNQvtCiKQR2Ca7x6sCBFG64YQozZ64HoEWLqowZ05UmTU4PcmTGhDavVVUrgb7ZTO8HrCi0aE6RdZlu8qN06RhSUtIpVy6W0aO78MMPd1nSMMYDryWOR4EZInIZsNCd1hI4A+jkj8AKwkobJi/ffPMnVaqUpk6deESEd97pRokSUVSuXDrYoRkTNjyVOFT1G5xG8SlAaffxKVBXVb/zX3gFY6UNk9WuXYe5884vaNv2Xe67bzqqzrhkNWqUt6RhTD7lWeIQkRpAByAa+EhVf/V7VAVgjeImOxkZyrvvrqB//zns2XOEmJhIWreuTnq6EhVlw7caUxC5Jg4RaYPToWFJd1KaiNymqpMKsjER6QgMw+k08T+q+nIOy12DU7q5UFWXeFm3VVOZrH79dSf33Tedb7/dDMCll9Zi1KgunHNOfJAjMya85VVV9RzwNVANSMAZl+PVgmxIRCKBkThtIg2Anu4AUVmXK4PT6P5TQbZj1VQGICkpmZYt3+bbbzdTqVIpJk68ijlzbrGkYUwhyKuq6jygjar+BSAiDwN3i0iFLH1WedEcWK+qG911TQauBFZnWe454BWgfz7XbwyqiohQrlwJHnusFVu37ufFFy+lQgXrkNCYwpJXiaM8sDPziaoewunUsHwBtlUV2OLzPNGddoyInA+cqarTc1uRiNwjIktEZMnff1tnhga2bt3Ptdd+wsSJq45NGziwNaNHd7WkYUwh83I5biMR2ePzXICGIlIhc4KqLjv5ZfkjIhHAUOD2vJZV1XHAOIBmzZrpqW7bhK+0tAxGjlzEk0/O4+DBoyxbto0bbzyPyMgIRKzx2xh/8JI4ZuMkC19f+PyvOI3dedkKnOnzvJo7LVMZoCEw3/3Cnw5MFZFuXhvITfGyePFWevWazrJl2wDo3r0ew4d3JDLSBlcyxp/yShy1CnFbi4E6IlILJ2H0wOkDCwBVTcJpgAdAROYDj3hJGnYpbvFy6NBRHntsLqNGLUYVqlcvx1tvdaJbt7rBDs2YYiHXxKGqfxbWhlQ1TUT64JRgIoF3VPVXERkMLFHVqQVdt12KW7xERUUwd+5GIiKEhx66iGeeaUupUjHBDsuYYkMy76ANV82aNdNdlz0L2PgbRdmGDXsoX74E8fHOLUWLF2+lRIkozjuvcpAjMyY8ichSVW1WkNdaZbAJaSkpaTz//Dc0bDiaxx6be2z6hRdWtaRhTJB4HjrWmECbP38T9903nTVrdgHOFVTp6RnW+G1MkFniMCFn585D9O8/h/ffXwlA3brxjB7dhUsuKcxrNYwxBZWvxCEiCUBtYIWqpvgnJFOc7dp1mPr1R7JnzxFiYyMZOLA1jz7aithY+41jTKjw9G10+496G7gW576NOsBGERkDbFfVQX6L0BQrCQklufLKuiQm7mfUqC6cfXbFYIdkjMnCa2XxKzjdg5wPHPGZPg24qrCDMsWHc0/GHL755viV36NGdWH27JstaRgToryW/7sBV6nqChHxvX73N+Cswg/LFAf/+9/v9Okzk82bk5g+fR2rVt1HRIRQooRVSxkTyrx+QysAu7OZXgZIL7xwTHGwZUsS/frN4rPP1gDQtOnpjB3blYgI61vKmHDgtapqMU6pI1NmqeNe4IdCjcgUWWlpGQwd+iP164/ks8/WULp0DG++eQWLFt3NhRdWzXsFxpiQ4LXE8QQwW0TOdV/zkPt/c6CNv4IzRcv+/Sm89NJ3HDqUyjXX1OfNNztSrVrZYIdljMknT4lDVX8QkX8AjwAbgEuBZcBFqvqzH+PL06ZdhygdzABMrvbtSyYuLorY2CgqVoxj7NiuxMZG0qXLOcEOzRhTQJ5bId0EcZsfYymQAylplMY6OAw1qsqkSb/w4IOz6dPnQp56qi0AV19dP8iRGWNOldf7OHK9LlJV9+Q2PxBsrPHQsXbtbnr3ns5XX/0BwDffbD42pKsxJvx5LXHs4niDeHa8DORkirjk5DReeeU7XnzxO44eTadixThee+1ybr+9iSUNY4oQr4njkizPo4GmwH3Ak4UakQlL27cfpE2bCaxb5xQ+b7+9Ca+9djkJCSWDHJkxprB5bRxfkM3kuSKyEfgX8FGhRmXCTuXKpTjzzHJERUUwenQX2ratGeyQjDF+cqq36K7ALsctljIylPHjl3LJJbU455x4RISPPrqaChXiiImxmktjirICD2wgIqWBB4AthRaNCQsrV26nVat36NVrOr17TydzFMnKlUtb0jCmGPB6VdUBTmwcF6AkcAi4yQ9xmRB08OBRBg2az5tvLiQ9XTnjjDL06lWgkSeNMWHMa1VVnyzPM4C/gZ9UdW/hhmRC0eefr+H++2eSmLifiAjh/vub8/zz7SlbNjbYoRljAizPxCEiUUAp4HNV/cv/IZlQs3Xrfnr0mEJKSjoXXFCFMWO60qzZGcEOyxgTJHkmDlVNE5HXgOkBiMeEiNTUdKKiIhARqlYtywsvtCcmJpLevS+0Mb+NKea8ngEWAhf4MxATOn74YQsXXDCOiRNXHZv28MP/4P77W1jSMMZ4buMYDwwRkerAUpxG8WNUdVlhB2YCb8+eIzz++FzGjXPezlGjlnDzzY3srm9jzAlyTRwi8g7OJbeZN/gNzWYxxbocCWuqysSJq3j44S/5++/DREdH8OijrRg4sLUlDWPMSfIqcdwGDABqBSAWEwQ7dhykZ8//Mm/eJgDatq3B6NFdqF/fehs2xmQvr8QhAKr6ZwBiMUFQvnwJtm07SEJCSYYMuZxbb21spQxjTK68tHHk1iuuCUNz5mzg/POrEB9fktjYKD799DqqVClNfLx1SGiMyZuXS2S2i0h6bg+/R2kKxbZtB+jZ87906DCRxx6be2x6w4aVLGkYYzzzUuK4B9jn5ziMH6WnZzB27FIef/wr9u9PIS4uirp1421wJWNMgXhJHP9T1Z1+j8T4xbJl2+jVaxqLFzs3/XfpUocRIzpTs2b54AZmjAlbeSUOa98IY5s27aN58/GkpytVq5Zh+PBOXHVVPStlGGNOiaerqgqLiHQEhuHc9/EfVX05y/yHcAaGSsPpRPFOu6Kr4GrWLM8ddzShTJlYnn22HWXKWIeExphTl2vjuKpGFFY1lYhEAiOBTkADoKeINMiy2HKgmao2AqYArxbGtouLTZv28c9/TmLBgk3Hpo0b90+GDr3CkoYxptCc6giA+dEcWK+qGwFEZDJwJbA6cwFVneez/ELg5gDGF7ZSU9MZOvRHnn12AUeOpLFr12F+/PEuAKuWMsYUukAmjqqcOFpgItAil+XvAmZmN0NE7sG52ouY08/mkrrF9y7n777bTK9e0/j1178B6NGjIUOHdghyVMaYoiyQicMzEbkZaAa0zW6+qo4DxgHEVqmjE+5oHsDoQsPevUfo338Ob7+9HIDatSswalQXOnSoHeTIjDFFXSATx1bgTJ/n1dxpJxCRy4CBQFtVTQlQbGEnI0P54ovfiY6OYMCAi3n88YuJi4sOdljGmGIgkIljMVBHRGrhJIwewI2+C4hIU2As0NHuHTnZmjW7qFWrPLGxUcTHl+TDD6+mevVy1KuXEOzQjDHFSMBG5VHVNJyxy2cDvwGfqOqvIjJYRLq5i70GlAY+FZEVIjI1UPGFssOHUxk48CsaNRrNq69+f2x6hw61LWkYYwIuoG0cqjoDmJFl2tM+/18WyHjCwaxZ6+ndezp//LEPgF27Dgc3IGNMsReSjeMG/vrrAA88MItPP3WuVj7vvEqMGdOVf/zjzDxeaYwx/mWJIwStXbubZs3GceDAUUqWjGbQoLY88EBLoqNtoEVjTPBZ4ghBdepU5MILq1KqVDRvvdWJGjXKBzskY4w5xhJHCNi/P4Wnn55H794Xcs458YgIU6f2oFSpmGCHZowxJ7HEEUSqypQpq+nXbxbbth1kzZpdzJrl9LJiScMYE6oscQTJxo176dNnBjNnrgegZctqvPKKXVRmjAl9ljgC7OjRdIYM+YHnnvuG5OQ0ypcvwcsvX8rdd19ARIR1SGiMCX2WOAJsy5YkBg9eQEpKOjfddB6vv96BypVLBzssY4zxzBJHAOzde4Ty5UsgItSuXZFhwzpy9tkVufTSs4IdmjHG5FvAuhwpjjIylHfeWc7ZZ7/FxImrjk2/995mljSMMWHLEoef/PrrTtq1e5e77prKnj1HjjWCG2NMuLOqqkJ2+HAqzz23gCFDfiQtLYNKlUrxxhtX0LNnw2CHZowxhcISRyFau3Y3V1wxkU2b9iECvXpdwIsvXkqFCnHBDs0YYwqNJY5CVKNGOUqUiKJx48qMGdOVli2rBTskU0SkpqaSmJhIcnJysEMxYaZEiRJUq1aN6OjCG+jNEscpSEvLYMyYJfTs2ZD4+JLExkYxa9ZNVK1alqgoaz4yhScxMZEyZcpQs2ZNROx+H+ONqrJ7924SExOpVatWoa3Xzm4FtGjRVpo3H8/998/kscfmHpteo0Z5Sxqm0CUnJxMfH29Jw+SLiBAfH1/oJVUrceRTUlIyAwd+zahRi1GF6tXLceWVdYMdlikGLGmYgvDH58YSh0eqyscf/8qDD85m+/aDREVF8NBDLXn66bbWIaExplixOhWPVq7cQc+e/2X79oP84x9nsmzZPbzyyuWWNEyxISLcfPPNx56npaVx2mmn0bVr1yBGdaLPP/+cwYMHBzuMHO3Zs4fLL7+cOnXqcPnll7N3796Tlpk3bx5NmjQ59ihRogSff/45AK1btz42/YwzzqB79+4ATJs2jaeffvqkdfmNqob1I+b0s9Vf0tLST3j+4IOzdPz4pZqenuG3bRqTndWrVwc7BC1VqpQ2btxYDx8+rKqqM2bM0MaNG2uXLl08ryM1NdVf4amq6kUXXaR///235+X9HU9W/fv315deeklVVV966SV99NFHc11+9+7dWqFCBT106NBJ866++mp97733VFU1IyNDmzRpku1yqtl/foAlWsDzrlVV5WDevD/o3XsGY8d2pU2bGgAMHXpFkKMyBmoOmO6X9W56uUuey3Tu3Jnp06dz7bXXMmnSJHr27Mm3334LOL+m77zzTjZu3EjJkiUZN24cjRo1YtCgQWzYsIGNGzdSvXp1hg8fzo033shff/3FRRddxJw5c1i6dCkJCQl0796dLVu2kJycTL9+/bjnnnsAKF26NP369WPatGnExcXxxRdfULly5RNiW7t2LbGxsSQkJADwv//9j+eff56jR48SHx/Phx9+SOXKlbONp1evXmzevBmAN998k1atWrFo0SL69etHcnIycXFxTJgwgbp1T60984svvmD+/PkA3HbbbbRr145XXnklx+WnTJlCp06dKFmy5AnT9+/fz9dff82ECRMApzTYrl07pk2bxvXXX39KMXphVVVZ7Nx5iNtu+5z27d9nzZpdDB36Y7BDMiZk9OjRg8mTJ5OcnMyqVato0aLFsXnPPPMMTZs2ZdWqVbz44ovceuutx+atXr2auXPnMmnSJJ599lnat2/Pr7/+yrXXXnvshA3wzjvvsHTpUpYsWcLw4cPZvXs3AIcOHaJly5asXLmSNm3aMH78+JNi+/777zn//POPPb/44otZuHAhy5cvp0ePHrz66qvZxtOvXz8efPBBFi9ezH//+1/+9a9/AVCvXj2+/fZbli9fzuDBg3niiSdO2uaBAwdOqFbyfaxevfqk5Xfs2EGVKlUAOP3009mxY0eux3vy5Mn07NnzpOmff/45l156KWXLlj02rVmzZseSuL9ZicOVkaG8/fYyHntsLnv3JhMbG8mTT7ahf/9/BDs0Y07gpWTgL40aNWLTpk1MmjSJzp07nzDvu+++47///S8A7du3Z/fu3ezfvx+Abt26ERcXd2y5zz77DICOHTtSoUKFY+sYPnz4sXlbtmxh3bp1xMfHExMTc6wt5YILLmDOnDknxbZt2zZOO+20Y88TExO54YYb2LZtG0ePHj3hPgbfeObOnXvCSX7//v0cPHiQpKQkbrvtNtatW4eIkJqaetI2y5Qpw4oVKzwevROJSK5XPG3bto2ff/6ZK644uaZj0qRJxxJcpkqVKvHXX38VKJb8ssQB/PHHXm6++TN++GELAB061GbkyM6cfXbFIEdmTOjp1q0bjzzyCPPnzz9WIshLqVKl8lxm/vz5zJ07lx9//JGSJUvSrl27Y/cfREdHHzvJRkZGkpaWdtLr4+LiSEpKOvb8/vvv56GHHqJbt27Mnz+fQYMGZRtPRkYGCxcupESJEiesr0+fPlxyySV89tlnbNq0iXbt2p20zQMHDtC6dets9+ejjz6iQYMGJ0yrXLky27Zto0qVKmzbto1KlSrleDw++eQTrrrqqpPu+N61axeLFi06lmAzZVapBYJVVQFly8aydu1uTj+9NJMnX8OsWTdZ0jAmB3feeSfPPPMM55133gnTW7duzYcffgg4SSAhIeGEqpRMrVq14pNPPgHgyy+/PHZlUVJSEhUqVKBkyZKsWbOGhQsX5iuu+vXrs3798V6ok5KSqFq1KgDvvfdejq/r0KEDb7311rHnmSUI39e/++672b42s8SR3SNr0gAn6WbG8t5773HllVfmGFdmG1JWU6ZMoWvXriclurVr19KwYWA6Uy22iWP27PWkpDi/WuLjSzJ1ag/WrPk3N9zQ0G60MiYX1apVo2/fvidNHzRoEEuXLqVRo0YMGDAgx5P1M888w5dffknDhg359NNPOf300ylTpgwdO3YkLS2N+vXrM2DAAFq2bJmvuNq0acPy5ctxLhhy4rnuuuu44IILjjWYZ2f48OEsWbKERo0a0aBBA8aMGQPAo48+yuOPP07Tpk2zLeEUxIABA5gzZw516tRh7ty5DBgwAIAlS5acUPW0adMmtmzZQtu2bU9aR07tHvPmzaNLlwBVYxb0cqxQeeT3ctzNm/dp9+6TFQbpc88tyNdrjQmWULgct7AkJycfuwz2hx9+0MaNGxfauvv27atz5swptPWFi+3bt2v79u1znG+X4xZQWloGw4f/xNNPz+PQoVRKl46hYkXr7tyYQNu8eTPXX389GRkZxMTEZHuFVEE98cQT/PTTT4W2vnCxefNmXn/99YBtr1gkjoULE+nVaxorVzqXvl1zTX2GDetI1aon178aY/yrTp06LF++3C/rrly5Mt26dfPLukPZhRdeGNDtFfnE8dNPifzjH2+jCjVrlmfEiE506XJOsMMyJt9U1drfTL6p2+ZTmIp84mjevCpXXHE2TZuezpNPtqFkycIbzMSYQClRogS7d++2rtVNvqg643FkvQLrVIk/slEgxVapoynb1h17vm7dbh58cDZDh17BOefEA87NfRER9mUz4ctGADQFldMIgCKyVFWbFWSdRabEkZKSxssvf8dLL31HSko6JUpEMWWK02eLJQ0T7qKjowt1BDdjTkVA7+MQkY4i8ruIrBeRAdnMjxWRj935P4lITS/r/eqrjTRqNIZBgxaQkpLOHXc0YcyY0Onq2RhjipKAlThEJBIYCVwOJAKLRWSqqvr2BHYXsFdVzxaRHsArwA25rTdtXwqXXfYBAPXrJzBmzPHebI0xxhS+QJY4mgPrVXWjqh4FJgNZ77e/Esi83XQKcKnk0RKYkexUS734YntWrOhlScMYY/wsYI3jInIt0FFV/+U+vwVooap9fJb5xV0m0X2+wV1mV5Z13QPc4z5tCPwSgF0IBwnArjyXKh7sWBxnx+I4OxbH1VXVMgV5YVg2jqvqOGAcgIgsKeiVAUWNHYvj7FgcZ8fiODsWx4nIkoK+NpBVVVuBM32eV3OnZbuMiEQB5QBv/TYbY4wJiEAmjsVAHRGpJSIxQA9gapZlpgK3uf9fC3yt4X6jiTHGFDEBq6pS1TQR6QPMBiKBd1T1VxEZjNNL41TgbeADEVkP7MFJLnkZ57egw48di+PsWBxnx+I4OxbHFfhYhP2d48YYYwKr2A7kZIwxpmAscRhjjMmXsEkc/uquJBx5OBYPichqEVklIl+JSJG9KzKvY+Gz3DUioiJSZC/F9HIsROR697Pxq4h8FOgYA8XDd6S6iMwTkeXu96RzMOL0NxF5R0R2uvfIZTdfRGS4e5xWicj5nlZc0KEDA/nAaUzfAJwFxAArgQZZlukNjHH/7wF8HOy4g3gsLgFKuv/fV5yPhbtcGeAbYCHQLNhxB/FzUQdYDlRwn1cKdtxBPBbjgPvc/xsAm4Idt5+ORRvgfOCXHOZ3BmYCArQEfvKy3nApcfilu5IwleexUNV5qnrYfboQ556ZosjL5wLgOZx+z4pyn+RejsXdwEhV3QugqjsDHGOgeDkWCmQOAVoO+CuA8QWMqn6Dc4VqTq4E3lfHQqC8iFTJa73hkjiqAlt8nie607JdRlXTgCQgPiDRBZaXY+HrLpxfFEVRnsfCLXqfqarTAxlYEHj5XJwDnCMi34vIQhHpGLDoAsvLsRgE3CwiicAM4P7AhBZy8ns+AcK0yxHjjYjcDDQD2gY7lmAQkQhgKHB7kEMJFVE41VXtcEqh34jIeaq6L5hBBUlP4F1VfV1ELsK5f6yhqmYEO7BwEC4lDuuu5DgvxwIRuQwYCHRT1ZQAxRZoeR2LMjidYM4XkU04dbhTi2gDuZfPRSIwVVVTVfUPYC1OIilqvByLu4BPAFT1R6AETgeIxY2n80lW4ZI4rLuS4/I8FiLSFBiLkzSKaj025HEsVDVJVRNUtaaq1sRp7+mmqgXu3C2EefmOfI5T2kBEEnCqrjYGMMZA8XIsNgOXAohIfZzE8XdAowwNU4Fb3aurWgJJqrotrxeFRVWV+q+7krDj8Vi8BpQGPnWvD9isqt2CFrSfeDwWxYLHYzEb6CAiq4F0oL+qFrlSucdj8TAwXkQexGkov70o/tAUkUk4PxYS3PacZ4BoAFUdg9O+0xlYDxwG7vC03iJ4rIwxxvhRuFRVGWOMCRGWOIwxxuSLJQ5jjDH5YonDGGNMvljiMMYYky+WOExIEpF2bm+2YXtTlohsEpFH8ljmdhE5GKiYjCkMljiM34jIu+7JP+ujSbBjAxCR+T4xpYjIWhF5QkQiC2kTFwKjfLanInJtlmU+xunF1a+yHP+DIrJSRG4v4Hqy7oMpZixxGH+bC1TJ8sh2bIAgmYATU11gOPA8kGspwStV/dunl+KcljkSwLv778bZ18Y4CWuCiFwRoG2bIsQSh/G3FFXdnuWRJs5gU6tE5JCIbBWR/4hI+ZxWIiLlROQDd1CaZBHZKCIPZJk/zp1/QEQWeOyT6rAb0yZVHQF8BXR311lBRN4Tkb0ickRE5orIufmI6VhVldtXFjh382vmc9+qKhE5x513XpZ9v0dEdolItPu8gYhMd/dzp4hMEpHTPezrPndfN6jqizg9LHTw2c6FIvKlu639IvKdOB0AHtuf7PbBnfdPEVnqHoc/ROQFt7sPUwRZ4jDBkgE8AJwL3IgzhsJbuSz/PHAe0BWndHAnbmds4vSrMh2nO+iuQFOcgZu+Fg9jC2RxBLdLBuBdoAXOmAXNcbpkmCUicXnFlI0L3b+Zv/ovzLqAqq7F6WfppiyzbgI+UdVUd3++wSm1NQcuw+le5gtxegPOk4hEisj1QEUg1WdWGeADoLW77hXADBHJHJ4g231wSy0fAiNw3s87cfqLe9FLPCYMBXuEKnsU3QfOiTcNOOjzmJnDsh2BFCDCfd4Opw+hBPf5VJw+h7J7bXt33XFZpq8AHs0lvvnACPf/CJ8YXsHpNVaBNj7Ll8MZ5+VfecXkzt8EPOLzXIFrsyxzO3DQ53lf4E+OdwdUHSfJ/sN9Phj4Kss6Krjrbp5LLIqTFA+674kCu4Czc3mNANuAm/PYh2+Ap7JM6+5uS4L9ObRH4T+sxGH87Rugic/jXwAi0l5E5ohIoogcAP4PZ5jPnKpcRgM3uI26Q0TEd4yRC4CSwN9uw+9Bt/qnIVA7j/jucZdNxkkEE4Fngfo4J+wfMxdU1STgZ5yhRvOKqaAmA2fg/OoHZ9yIP1T1B/f5BUCbLPuZORBPXvvaH+c9uBwnqfZV1fWZM0WkkoiMdS8SSAIOAJVwklduLgAGZonpI6AUOb+fJoyFRe+4Jqwd9j05AYhIDZyqpfHA0zjjppwPTMJJHidR1Znu6zrhdIc9XUQ+VdU7cEoLOzh+svW1P4/4PsZJFCnAX6qa7saY22vUQ0wFoqo7RWQOTvXUN+7fD30WicA5dtk14O/IY/Xb3fdivYhcBywTkWWqusad/x5QGXgQp7SUgtPmk1dbRQTOMfw0m3nFsavyIs8ShwmGZjgnowd9TtRd83qRqu7CqYP/QERmApNEpBewDOeEl6Gq+R1fIilrYnP9hnNCvAjnBI6IlMVp05iQV0ya/eBZqTjdfOdlIjBCRMa52/O9/HUZcD3wp6qmZvdiL1R1vYj8H/AqkNnl/sU4pZDpACJSGactI699WAbUy+E4miLIqqpMMKzD+ew9IM5gOz1xGspzJCKDRaS7iNQRZ+Cdq4GN7gl6LvA9TgNxJ3edF4nIsyKSXSkkT6q6DvgCGCsird0rnSbilGA+8hBTdjYBl4rI6SJSIZfNf47TQP82sFidRvNMI3HaWj4WkRYicpaIXCbOFWVl8rmbQ4GuItLcfb4WZxzuBiJyIU612VEP+zAYuNE9Hg1FpJ6IXCsir+YzHhMmLHGYgFPVVUA/4CFgNU67R173TqQALwArcZJEGeCf7voUZzCar3Gqv37HGRa0LvDXKYR6B7AIp+1jEU47SkdVPZJXTDl4GLgEp01ieU4LqXPvx2c491tMzDLvL6AVTvvLLOBXnGSS4j48c9+HuThXh4FzNVRpYClO0ngHJ1Hkug+qOhvo4k5f5D4G4IyyZ4ogG8jJGGNMvliJwxhjTL5Y4jDGGJMvljiMMcbkiyUOY4wx+WKJwxhjTL5Y4jDGGJMvljiMMcbkiyUOY4wx+fL/TRENX3bhtX0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEaCAYAAAAVJPDdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2FUlEQVR4nO3dd3xUVf74/9c7PaRQEmoCBASkiZQgKFaayCro2ntd111Rf9bFssrqqqyuu18bq1g+uKtiXZVVLKCiiBSDCCK9EwgQAoRQ0t+/P+7NOOkzkMxkkvfz8cjDO+eee+d9E5z3nHPuPUdUFWOMMaZMWLADMMYY07BYYjDGGFOOJQZjjDHlWGIwxhhTjiUGY4wx5VhiMMYYU44lBhOyRORyEfnCh3oviMifAxFTfRORa0TkO6/XKiLdghmTaXwsMZh6ISKbROSwiBwQkZ0iMk1E4uvyPVT1DVUd7UO9m1T1kbp8bwARmSQiRe417hOR70XkxLp+n6MhImeKyLcikici2SLyjYiMC3ZcpmGzxGDq0zmqGg8MBNKBBypWEJGIgEdVt952rzEZ+Bp4N8jxeIjIBTjx/BtIBdoCDwLnHMG5RETs86KJsD+0qXequg34FOgLnu6Pm0VkLbDWLTtbRH7y+ubdr+x4EekoIv91v/HmiMhzbrmnW8X94PqniOwSkf0i8rOIlL3fNBH5q9f5fici60Rkj4jMEJEOXvtURG4SkbVuLM+LiPhwjcXAG0CKiLR2z9VcRF4RkSwR2SYifxWR8ApxrHS/za8QkYFu+UQRWe9Vfp6/v3M35n8Aj6jqy6qaq6qlqvqNqv7OrTNJRF73OibNvf4I9/UcEXlUROYBh4C7RSSjwvvcLiIz3O1oEfm7iGxxW4kviEisv7Gb4LPEYOqdiHQExgJLvIrPBYYAvUVkAPAq8HsgCXgRmOF+0IQDHwObgTQgBXirircZDZwK9ACaAxcBOVXEMhx43N3f3j1vxfOdDQwG+rn1zvThGqOAq9z33OsWTwOKgW7AADfGG9z6FwKT3GMSgXFe8a4HTnGv4y/A6yLSvrYYKjgW6Ai85+dxFV0J3AgkAC8Ax4pId6/9lwFvutuTcX7//XGuOQWnhWJCjCUGU58+FJF9wHfAN8BjXvseV9U9qnoY54PnRVVdqKolqvoaUAAMBU4AOgB3q+pBVc1X1e+orAjnw6snIKq6UlWzqqh3OfCqqv6oqgXAvcCJIpLmVWeyqu5T1S043UP9a7jGi9xrPAz8DrhAVYtFpC1OMvz/3Lh3Af8ELnGPuwF4QlV/UMc6Vd0MoKrvqup29xv+2zitqhNqiKEqSe5/q/od+GOaqv6iqsWqmgt8BFwK4CaInjhJXHD+jre7f9c8nL/3JdWd2DRclhhMfTpXVVuoamdV/aObBMps9druDNzpdt3scz9oO+IkhI7AZrerplqq+hXwHPA8sEtEpopIYhVVO+C0EsqOO4DzTT3Fq84Or+1DQE2D5u+oaguc/vvlwCCva4oEsryu6UWgjbu/I07LoBIRucqrW20fThdccg0xVKWs9eFvS6OirRVev4mbGHBaCx+q6iGgNdAMWOwV92duuQkxlhhMsHhP67sVeNRNImU/zVR1uruvky+D1Kr6jKoOAnrjdGncXUW17Tgf2gCISBzOt+ttR3EtqOpunG/Mk9xun604rZ5kr2tKVNU+7iFbgWMqnkdEOgMvAROAJDfpLAdqHeeoYLX7HufXUOcgzod5mXZV1Kk4/fIsoLWI9MdJEGXdSLtxWk19vK63uTswb0KMJQbTELwE3CQiQ9xB5DgR+Y2IJACLcLpDJrvlMSIyrOIJRGSwe3wkzgdePlBaxXtNB64Vkf4iEo3T3bFQVTcd7UWo6mrgc+AetxvrC+ApEUkUkTAROUZETnOrvwzcJSKD3Gvu5iaFOJwP42z3uq7FHbT3MxYF7gD+LCLXesVwsohMdav9BJwqIp1EpDlOt1pt5y3CudPpSaAVTqJAVUtx/o7/FJE2buwpIlLr+IxpeCwxmKBT1Qyc/vnncAZu1wHXuPtKcG6v7AZsATKBi6s4TSLOB9NenK6iHJwPr4rvNRv4M/A+TsI5hrrtB38SuNH9cLwKiAJWuHG9h9u1o6rvAo/ifOPOAz4EWqnqCuApYD6wEzgOmHckgajqezi/q+twWko7gb/ijBOgqrOAt4FlwGKcQX5fvAmMBN6t0MX3J5y/3QIR2Q/MxhkENyFGbKEeY4wx3qzFYIwxphxLDMYYY8qxxGCMMaYcSwzGGGPKCfUJzEhOTta0tLRgh2GMMSFl8eLFu1W1ygcQQz4xpKWlkZGRUXtFY4wxHiKyubp91pVkjDGmHEsMxhhjyrHEYIwxppyQH2MwpqkoKioiMzOT/Pz8YIdiQkhMTAypqalERkb6fIwlBmNCRGZmJgkJCaSlpeHDonLGoKrk5OSQmZlJly5dfD4uYF1JIvKqOMsuLq9mv4jIM+IsubisbJlDY4wjPz+fpKQkSwrGZyJCUlKS363MQI4xTAPG1LD/LKC7+3Mj8K8AxGRMSLGkYPx1JP9mAtaVpKrfVlg+saLxwL/deeQXiEgLEWlfzfKMR+3xmStZsmVfpfIOLWL42wX9iI4Ir3yQMcY0AQ3prqQUyi8jmEn55RY9RORGEckQkYzs7OwjerM1O/NYtGlPpZ8Pf9rO0q25R3ROYxo7EeGKK67wvC4uLqZ169acffbZQYyqvA8//JCHH3442GFUa8+ePYwaNYru3bszatQo9u7dW23d/fv3k5qayoQJEzxlY8aM4fjjj6dPnz7cdNNNlJSUAHDXXXfx1Vdf1UmMDSkx+ExVp6pquqqmt259ZEvKTjyrF2/fOLTcT6/2zhLBJaW2RoUxVYmLi2P58uUcPuws3z1r1ixSUqr8/lat4uIal+8+ak888QR//OMffa5f3/FUNHnyZEaMGMHatWsZMWIEkydPrrbun//8Z0499dRyZe+88w5Lly5l+fLlZGdn8+677wJwyy231HgufzSkxLANZ4H0Mqkc5Tq8NTm2XQJDuiaV+0mMsZu0jKnN2LFj+eSTTwCYPn06l156qWffnj17OPfcc+nXrx9Dhw5l2bJlAEyaNIkrr7ySYcOGceWVV5Kdnc2oUaPo06cPN9xwA507d2b37t0AnHvuuQwaNIg+ffowdepUz7nj4+O5//77Of744xk6dCg7d+6sFNuaNWuIjo4mOTkZgP/9738MGTKEAQMGMHLkSM8xVcVz/vnnM3jwYAYPHsy8ec6ieYsWLeLEE09kwIABnHTSSaxevfqof38fffQRV199NQBXX301H374YZX1Fi9ezM6dOxk9enS58sRE5wtscXExhYWFnjGEzp07k5OTw44dO446xob0STgDmCAibwFDgNz6Gl8wJtSlTfykXs67afJvaq1zySWX8PDDD3P22WezbNkyrrvuOubOnQvAQw89xIABA/jwww/56quvuOqqq/jpp58AWLFiBd999x2xsbFMmDCB4cOHc++99/LZZ5/xyiuveM7/6quv0qpVKw4fPszgwYM5//zzSUpK4uDBgwwdOpRHH32Ue+65h5deeokHHnigXGzz5s1j4MBfb2g8+eSTWbBgASLCyy+/zBNPPMFTTz1VKZ7LLruM22+/nZNPPpktW7Zw5plnsnLlSnr27MncuXOJiIhg9uzZ3Hfffbz//vvl3jMvL49TTjmlyt/Vm2++Se/evcuV7dy5k/bt2wPQrl27KhNcaWkpd955J6+//jqzZ8+utP/MM89k0aJFnHXWWVxwwQWe8oEDBzJv3jzOP//8KuPxVcASg4hMB04HkkUkE3gIiARQ1ReAmcBYnDVjDwHXBio2Y4zv+vXrx6ZNm5g+fTpjx44tt++7777zfHAOHz6cnJwc9u/fD8C4ceOIjY311Pvggw8Ap8+8ZcuWnnM888wznn1bt25l7dq1JCUlERUV5RnLGDRoELNmzaoUW1ZWFt7dy5mZmVx88cVkZWVRWFhY7l5+73hmz57NihUrPPv279/PgQMHyM3N5eqrr2bt2rWICEVFRZXeMyEhwZP8/CUiVd41NGXKFMaOHUtqamqVx33++efk5+dz+eWX89VXXzFq1CgA2rRpw/bt248oFm+BvCvp0lr2K3BzgMIxJqT58s2+Po0bN4677rqLOXPmkJOT49MxcXFxtdaZM2cOs2fPZv78+TRr1ozTTz/dcw9+ZGSk50M0PDy8yrGB2NhYcnN/vXnklltu4Y477mDcuHHMmTOHSZMmVRlPaWkpCxYsICYmptz5JkyYwBlnnMEHH3zApk2bOP300yu9p78thrZt25KVlUX79u3JysqiTZs2lY6bP38+c+fOZcqUKRw4cIDCwkLi4+PLjSHExMQwfvx4PvroI09iyM/P9yS7o9GQxhiMMSHiuuuu46GHHuK4444rV37KKafwxhtvAM6HfHJysqdP3NuwYcN45513APjiiy88d+bk5ubSsmVLmjVrxqpVq1iwYIFfcfXq1Yt169Z5Xufm5noGx1977bVqjxs9ejTPPvus53VZC8D7+GnTplV5bFmLoaqfikkBnKRaFstrr73G+PHjK9V544032LJlC5s2beLvf/87V111FZMnT+bAgQNkZTk97MXFxXzyySf07NnTc9yaNWvo27dvtdfpK0sMxhi/paamcuutt1YqnzRpEosXL6Zfv35MnDix2g/jhx56iC+++IK+ffvy7rvv0q5dOxISEhgzZgzFxcX06tWLiRMnMnToUL/iOvXUU1myZAlOB4QTz4UXXsigQYM8A9JVeeaZZ8jIyKBfv3707t2bF154AYB77rmHe++9lwEDBtTZ3UsTJ05k1qxZdO/endmzZzNx4kQAMjIyuOGGG2o89uDBg4wbN45+/frRv39/2rRpw0033QQ4c2mtW7eO9PT0o45Ryn6BoSo9PV3raqGei1+cz8KNe5j+u6GceExSnZzTmLqycuVKevXqFeww6kRBQQHh4eFEREQwf/58/vCHPxxxP31Ft912G+eccw4jR46sk/OFig8++IAff/yRRx55pNK+qv7tiMhiVa0yizSku5KMMU3Eli1buOiiiygtLSUqKoqXXnqpzs593333sXDhwjo7X6goLi7mzjvvrJNzWWIwxgRc9+7dWbJkSb2cu23btowbN65ezt2QXXjhhXV2LhtjMCaEhHrXrwm8I/k3Y4nBmBARExNDTk6OJQfjs7L1GCrehlsb60oyJkSkpqaSmZnJkU4caZqmshXc/GGJwZgQERkZ6dcqXMYcKetKqgcbsg9w5SsLuejF+ZTaTK3GmBBjLQYfzFu3myVb9nLzGd1qXA1JVXnt+008/ukqCopLAdhzqJDk+OhAhWqMMUfNEkMttu45xOUvO/dEj+rdjmPbJVRZ72BBMfe8v4xPltmEsMaY0GZdSbWYNOMXz3ah2wqoKDuvgAtemM8ny7KIiwrnX5cPJCku6ojeb9f+fP4xaw3vZGytvbIxxtQDazHUYOGGHL5ctavGOtv2HeaKlxeycfdBuibHMfWqdLq1ieeBD5d76uTlF1FUorSqIVlk7j3Ei99s4O2MrRQWl5IQE8FF6R2rrW+MMfXFEkMNnpq1psb9uw8UcOnUBWzZc4je7RP59/UnVBpP+PyXHfzt01VEhIex8L4RRIaXb6TlHi7i+a/XMW3eJgpLfm2RFJfYoLUxJjgsMVRj+bZcFm3cQ0J0BEnxUWzKOVRuf35RCTe8lsGWPYc4LqU5r98whOaxkZ79Re6H/P0f/NpyOFRYQvNYJzGUlipvLtrCU1+sZu8hZ/GPccd34LqTu3Du8/Pq+/KMMaZalhiqMe37TQBcmN6RRZvKL0Siqtz17lJ+2rqPlBaxvHJNermkALA//9cpesMEvO9a3bj7IH96bxmLNu0B4IS0Vjxwdi/6pbbgUGHNU/uqKqoQFlb93VHGGHM0bPC5CvlFJcz82bm76KoTO1fa/98ft/HxsizioyOYdu1g2iRUftx8VO+2dGgew3s3nUhctJt/FV79biNj/t+3LNq0h+T4aJ6/bCBv/34o/VJb1BjT/vwinv1yLQMemcVNry8+6ms0xpjqWIuhCl+u2smhwhL6d2xBWnL55Qi37jnEQ+6dSpPG9aF726pvX5165aBK3+x//3oGCzY4rYTfDkjhz2f3pmUtdy/tzy9i2rxNvDx3g6cV8tPWfUd6acYYUytLDFX431KntTDu+A7lyhXlT+8v40BBMWP6tOP8gSnVnsNZ5NvZznM/0Bds2ENCTARPXnA8Y/q2qzGGUvdhuX/OXsM+dwyiT4dEftm+/0gvyxhjfGKJoQq5h50P4oof3p8t38H363No2SySx357XI1PQXsrG2PokhzHa9eeQKekZrUeU1Bc6mmZnJDWittH9aBr6ziGPPalX9ey52Ah8dERREVYr6ExxjeWGKpxTOs4OrSILVc2Zc56AO4cfWyNzyRU9ODZvdm69zB3ju5Bs6iaf+VhIp5E0qlVM+4b24sz+7RFRNi5P79c3ZJS5atVu0hLalauS0tVmb8hh1e/28iXq3Zxdr8OPHvpAMAZ+G7fPIaYyHCf4zfGNC2WGKpxSvfWVZZ3TY7jksH+PXh2zTDfZ8SMiQznkXP7UlRcyiUndKryA1xxWi9PfbGatbsO0KdDIp/cegrFJaV89NN2Xv5uIyuzfu1yWrszj/cXZ/Lv+ZtYmpnLuOM78IybKIwxpiJLDNU4uVuyZ9vruTNuG9mdiPD67Za5fEjlO6G8ZecVlLszad+hIt7N2MpzX69js/u8RXJ8FKd2b81/l2xj1Y487nx3qad+Vu7h+gncGNMoWMezl1KvlbEGdm7p2fb+9n12v/ID0oEU7nWHU3J8NL8/rSvgTMtx93vL2JxziC7JcTxxQT/mTRzOzcO7eer3bp/INSelVTrnlpxDPP7pSk7+21e85j67UZ1defm2epgxTYC1GLyszz7o2a5qDOHSEzqW+3AOtOT4aO4a3YPI8DCuGNqZvPxiXvxmAwBpSc24ZXh3xvfv4GnRdE2OY+qVg0iKj2Zgpxb8sGkv077f5I5N7OQ/8zczZ002ZZ/1b/+wld0HCjirb3t6d0gEnNbJRz9t473Fmazakccdo3pw64juQbl+Y0xgWGLwsudgIVA5KTx5QT++WZPNA7/pHYywypkw/NcP5bjoCB49ry/x0RH85rj2lbq4RITRfSrfFvvjln1cNy0DgKiIMHq3T+SnrftYkbWfFVn7WbUjj/MGpPD+4kzmrMmmxOux7X/MWsOZfaqfftwYE/osMVThuJTm5V5fmN6RCxvoTKe1jUd4i/a6ZbVjq1iuGNKZC9M7sisvn7FPz0VEKClVZq3YyawVOwGICBNG9mpDcnw0b/3gTAX+f/M2Mvn8fnV7IcaYBsMSg5ekuChyDhZy3oDqH1wLZX1TmvPw+D60bx7L8J5tPN1ireKimDdxOCu27+f615yWxLFtE7hocEfG9+9Acnw0uw8UeBJDkTvz67pdeXy3djdj+7WvcloQY0xoklAfTExPT9eMjIw6OdfmnIMszczlnH7tfX54rTEpLillxtLtdE5qxsBOLSv9Dt7N2Mrd7y3j2LYJxEaFe6bm+N0pXbi/AXSzGWN8JyKLVTW9qn3WYvDSOSmOzklxtVdspCLCw/jtwNRa663emVfu9aHCkvoKyRgTBJYYjM+OS21Ocnw0PdslcMGgVLLzCnh05spgh2WMqWMBTQwiMgZ4GggHXlbVyRX2dwJeA1q4dSaq6sxAxmiq17NdIhkPjPS8/s+CzUGMxhhTXwL2gJuIhAPPA2cBvYFLRaRix/QDwDuqOgC4BJgSqPjMkXtj4Ra+XZNdqXzn/nz+NWc91/7fIlbtsFlhjQkVgWwxnACsU9UNACLyFjAeWOFVR4FEd7s5sD2A8Rk/xXrN43TVq4v44vZT6dSqGbNX7uS9xZl8uybbs3Ldcakt6NkusZozGWMakoDdlSQiFwBjVPUG9/WVwBBVneBVpz3wBdASiANGqmql5cpE5EbgRoBOnToN2rzZujSC4VBhMeOfm8faXQc8Zc1jIz3TlkeGC63jo9mem8+pPVoTFR7Gj1v28tylAzjJay4qY0zg1XRXUkObK+lSYJqqpgJjgf+ISKUYVXWqqqaranrr1lXPgmrqX7OoCF6/YUi5stzDRfTpkMikc3qz8L6RXHJCJwC+XZPN7JU72XOwkMteXsjCDTlVndIY0wAEsitpG+D9+HCqW+btemAMgKrOF5EYIBnYFZAIjd/aJsYw6/ZTueu9ZQzo2IKL0jt65lkCPFNn9E1JJOdAIVm5zpoSGZv3MqRrUlBiNsbULJCJ4Qegu4h0wUkIlwCXVaizBRgBTBORXkAMUHlU0zQo3dsm8NHNw6rcd2afdqx8eAyxUeHkF5Uw9pm5bPCarNAY0/AErCtJVYuBCcDnwEqcu49+EZGHRWScW+1O4HcishSYDlyjof5otiE2yhmkjokMZ0wVk/oZYxqWgD7H4D6TMLNC2YNe2yuAqr96mkblYEFxsEMwxlSjoQ0+myZiypz1zHZncDXGNCw2JYYJqDYJ0Z7tb9dmU1hSyohebYiOqLy2tTEmOKzFYALqqhPTGNbNuRvp3/M388c3fuS/P1a8Oc0YE0yWGExAhYUJJ3cr/+xJXn5RkKIxxlTFupJMwF07LI3ubeL5YsUO3snIZGVWHqraJNfAMKYhshaDCbiYyHBG9m5L89hIAD5Yso2Pl2UFOSpjTBlLDCZourWJ92zv3J8fxEiMMd4sMZiguXhwJ3470Flf+6et+7BnGY1pGCwxmKBqERsFwMfLsvifdScZ0yBYYjBB1dOdZA/gkY9XkLn3EBmb9ljrwZggsruSTFBdNLgjizfv5e2MrWTnFXDy374GnHUdvrzzNJLjo2s5gzGmrlmLwQTd+AEdKpXlHi7iq5U227oxwWAtBhN0Jx2TzA/3j+TjZdtJjo/mlulLAPgpcx8HC4u59IROxETalBnGBErAlvasL+np6ZqRkRHsMEwduve/y5i+aGu5stl3nEq3NgnVHGGM8VcoLe1pDElxlccV/vT+zxQUlwQhGmOaHutKMg3OrSO6c0bP1qS2bMaQx74EYPHmvUz5ej2pLWM5d0AKkeH2ncaY+mKJwTQ4URFhDOrcCoAplw/kj2/8CMDTX64FnBXhzu5XecDaGFM37GuXadDGHtee64Z1KVc24c0l/LR1H7tsGg1j6oUNPpsG71BhMUu27OOTn7N4c+EWT3mYwCtXD2bVjjy27DnE/b/pRXy0NYKN8UVNg8/2f5Fp8JpFRTCsWzKDOrfk+3W72ZRzCIBShWun/eCpl5dfxNOXDCA8zKbvNuZoWFeSCRkxkeH864pB/P60rnRJjqu0/+NlWfywaU8QIjOmcbEWgwkpvdon0qt9IledmMY3q7MZ0asN36zO5p73lwFwuNBuaTXmaFmLwYSklBaxXDakE20TY7hocEdOP7Z17QcZY3xiicEYY0w5lhiMMcaU4/cYg4gMAUYAbaiQWFT11jqKyxhjTJD4lRhE5C7gCWAdsB3wfggitB+IMMYYA/jfYrgNuFVVn6uPYIwxxgSfv2MMicDM+gjEmLqwcsf+YIdgTMjzNzFMB8bURyDGHI1StyPzic9Ws3xbbnCDMSbE+duVtBX4i4gMA5YBRd47VfUfdRWYMf7o1S6Bb9dkA3DrW0uYeespxESGs23fYXIOFNAvtUVwAzQmhPibGG4ADgAnuT/eFLDEYIJi4lk9WbJ1H4s27mFD9kGe/3ody7fl8vVqJ1ncPrIHt47ohojNo2RMbQI6u6qIjAGeBsKBl1V1chV1LgIm4SSapap6WU3ntNlVTZmvV+/i2v/7odr9XZLjOOmYJPLyi3nywn5ER9g60qbpqpfZVUUkHlBVPehj/XDgeWAUkAn8ICIzVHWFV53uwL3AMFXdKyJtjjQ+0/SccWwbzhuQwgdLtpGW1IzLhnQi52AhL36zAYCNuw+ycbfzz/XGU7vSN6V5MMM1psE6kgfcbgb+BKS4rzOBv6nqlFoOPQFYp6ob3OPeAsYDK7zq/A54XlX3AqjqLn/jM03bo+f15fqTu9C7fSJh7vTbvdsncttbPwEQHx3BgYJiSkN8HRJj6pO/D7jdh/ON/u/Ad27xKcBkEUmsqmvISwrO4HWZTGBIhTo93PeZh9PdNElVP6sijhuBGwE6derkzyWYRq5ZVESllsD4/imM758CwDnPfsfPdteSMTXyt8VwE3Cjqk73KvtSRNYCjwE1JQZf4+kOnA6kAt+KyHGqus+7kqpOBaaCM8ZwlO9pjDHGi7/PMbQBqhrdWwS0reXYbUBHr9epbpm3TGCGqhap6kZgDU6iMMYYEyD+JoY1QFV3CV0GrK7l2B+A7iLSRUSigEuAGRXqfIjTWkBEknG6ljb4GaMxxpij4G9X0iTgHRE5FZjnlg0DTgMurOlAVS0WkQnA5zjjB6+q6i8i8jCQoaoz3H2jRWQFUALcrao5fsZojDHmKPj9HIOIDAJuB3q5RSuBp1R1SR3H5hN7jsH446yn57Iyy5lP6di2CRQUl/DJracQF22r3JqmpU6fY1DVxcAVRx2VMUEQE/lr7+nqnXkAjPrHN8y5+wyiImzdKmPAhzEGEWnlvV3TT/2GaszRu21Ed5rHRtKzXYKnbHtuPptyfHpO05gmwZcWQ7aItHcfNttN1QvyiFtucwyYBu30Y9uw9KHRACzZspfzpnwf5IiMaXh8SQzDgT3u9hn1GIsxATWgU0u6t4ln7a4DwQ7FmAal1sSgqt9UtW2MMaZx8mu0TUR6i8ixXq9HicjrInKvO0meMcaYEOfvbRivAgMARKQj8BHQCrgZ+GvdhmZM/SsqKQVg9D+/5WBBcZCjMaZh8Dcx9AR+dLcvABaq6ljgSuDSugzMmEBonRDt2V6auS94gRjTgPibGMKBQnd7BDDT3V5P7XMlGdPgPHvpQM/2ZS8tZN+hwhpqG9M0+JsYlgN/EJFTcBJD2ZTYKTi3shoTUto1j2FEz1/Xg8o5aInBGH8Tw59wFtOZA0xX1Z/d8nE4M6waE3Kev3wgLZpFArD/cBHZeQVBjsiY4PJrSgxV/VZEWgOJZausuV4EDtVpZMYESExkOK2aRbHvUBHn/+t7oiPCWXj/CBJjIoMdmjFBcSRzJZUAeyuUbaqrgIwJhrJ5kkoVDheVMO7Z72gWFcFHE4YRGW5zKJmmpdbEICIzgCtUdb+7XS1VHVdnkRkTQJPG9eHnzFxemruBXXkFbMpxGsC78gpIaREb5OiMCSxfWgw5/Do/kq2NYBqloV2TGNo1iejIMBZu3MO3q7PJKyhm9Y79lhhMk+P3egwNja3HYOrDoEdmee5Q+uPpx9AqLoobTuka5KiMqTs1rcfg75QY7UQktYryVBGx5xhMo3HiMUme7Slz1vPXT1baMw6myfB3VO114Kwqys8E/nP04RjTMDx32UBO69GaqIgwRJyyopLQbl0b4yt/E0M68G0V5XPdfcY0Gq9cnc7Pk0aTFBcV7FCMCSh/b1eNAKKrKI+pptyYkBURHub//dzGNAL+thgWAn+oovxm4IejD8cYY0yw+fuF6H7gKxHpB3zllg3HmYp7ZF0GZowxJjj8ajGo6gLgRGAT8Fv3ZyNwoqra4rnGGNMIHMmUGEuBy+shFmMapIIiZzGfz3/ZwRVDOwc5GmPqn9+TwIhIWxG5S0SmiEiyWzZMRLrUfXjGBF/ZPEoPfLicvPyiIEdjTP3z9wG3QcBqnBbDDUCiu2sU8GjdhmZMw3DR4I6e7cLi0iBGYkxg+Nti+DvwtKoOALwnrf8cGFZnURnTgPxpTE9iI8MBeP7r9UGOxpj6529iGAS8VkV5Fra0p2nE4mOc4bhX520kbeInPPn5qiBHZEz98TcxHAZaVlHeE9h19OEY0zDdfeax5V4///V6DhYUBykaY+qXv4nhI+AhESl7yllFJA34G/B+XQZmTENyUXpHHj2vL628pscoUSXUZyc2pip+TbstIonATKAfEAfswOlCmgeMVdWD9RFkTWzabRNoXe/9hFKv/20+ve0UerVPrP4AYxqgOpt2GygGTgfOBf4EPA2MUdXTgpEUjAmGtokx5V6f+/w8ikvsbiXTePicGEQkHMgFeqjqV6r6d1V9QlVn+3GOMSKyWkTWicjEGuqdLyIqIjZjq2lwXrvuBJ68oB+DOjvDbQXFpRSXWpeSaTx8TgyqWgJsBo5oDmI3sTyPs55Db+BSEeldRb0E4DacCfuMaXB6tE3gwvSOvP+Hkzxl72RsDWJExtQtf7uSHgEmlz3x7KcTgHWqukFVC4G3gPHVvMffgPwjeA9jAioh2rmN9cGPfmHcc9/ZYLRpFPxNDHcBJwPbRGS9iCzz/qnl2BTA+2tVplvmISIDgY6q+klNJxKRG0UkQ0QysrOz/bwEY+rOX8/r69lelpmL9SiZxsDfSfTeAxSQug5ERMKAfwDX1FZXVacCU8G5K6muYzHGV+P7pzC8ZxuOm/RFsEMxps74lBhEpBnwJM7dSJHAl8Atqrrbj/faBnT0ep3qlpVJAPoCc8RZZLcdMENExqmq3Y9qGqyEmEjCBGstmEbD166kv+B8k/8EmI6zKM+//HyvH4DuItJFRKKAS4AZZTtVNVdVk1U1TVXTgAWAJQVjjAkwXxPDb4HrVfVGVb0N+A1wrnunkU9UtRiYgDPh3krgHVX9RUQeFpFx/gZuTENS1lq4+Y0fgxuIMXXA1zGGjsDcshequkhEioEOlB9QrpGqzsR5ctq77MFq6p7u63mNCbaUFrFs23eYz37ZwZOfr+LSEzqR2rJZsMMy5oj42mIIBworlBVzBCvAGdMYvXPTiZ7t579ez8UvLghiNMYcHV8/2AV4XUS812CIAV4SkUNlBapqXUKmSUppEcvD4/vw4Ee/ALBt3+EgR2TMkfO1xfAasB3I8fp5HacbybvMmCbrqhPTWP/YWADC6vyGbmMCx6cWg6peW9+BGGOMaRj8ffLZGGNMI2eJwRhjTDmWGIwxxpRjicGYelCq2EyrJmRZYjCmnnS5dybfr/NnOjFjGgZLDMbUoTCBzkm/PvF82csLuX7aDxTZ0p8mhFhiMKYOiQhf3H4qN512jKfsy1W76H7/pzz8vxVBjMwY31liMKaORUeEM/Gsnsy/d3i58umLtgQpImP8Y4nBmHrSvnksGx8f61kbWrHBaBMaLDEYU49EhB5t4wHILyrlnR+2crCgOMhRGVMzSwzG1LNwr4mT7nl/GX0e+pzv1trdSqbhssRgTD1rFhXBvWf1LFf2p/eXBSkaY2pnicGYAPj9acewafJvuGV4NwD25xcFOSJjqmeJwZgAuuakNAAiw+1/PdNw2b9OY4wx5VhiMMYYU44lBmOCYM/BQuauzQ52GMZUydc1n40xdSDCa2zhylcWcc1JaXRrE8+BgmJG925L19bxQYzOGIeE+tTA6enpmpGREewwjPHZ81+v48nPV1e57/qTu/Dns3sHOCLTFInIYlVNr2qfdSUZE2A3n9GNpy/pX+W+z5bvCGwwxlTBupKMCYLx/VMY3z/F83rJlr2cN+V7wuyrmmkA7J+hMQ1AUlw0AFv3HObxT1dyuLDEVoAzQWMtBmMagJZxkZ7tF7/ZwIvfbADgluHdSIiJ4ORurendITFY4ZkmxloMxjQACTGRfHP36ZXKn/1qHY/NXMWDHy0PfFCmybLEYEwD0Tkpjl/+ciaLHxjJHaN6ANDHbSVkbN7LoUKbrtsEht2uakwDtmL7fsY+M9fz+oxjnS6l5rGRjO+fQtvEmCBGZ0JZTber2hiDMQ3YMW3iSGkRy7Z9hwH4enU2X692nph+bOYq/n7h8VwwKDWYIZpGyLqSjGnAoiPCmTdxOG/eMITYyPBK+9/+wdaRNnUvoC0GERkDPA2EAy+r6uQK++8AbgCKgWzgOlXdHMgYjWmITuqWzMpHxnheT5u3kUn/W0Hm3sOUliphXqvEGXO0AtZiEJFw4HngLKA3cKmIVHz2fwmQrqr9gPeAJwIVnzGhpE9KcwCycvO5/8OfgxyNaWwC2ZV0ArBOVTeoaiHwFjDeu4Kqfq2qh9yXCwDrPDWmCse2S/Bsr991MIiRmMYokIkhBdjq9TrTLavO9cCn9RqRMSEqMSaSt28cGuwwTCPVIO9KEpErgHTgtGr23wjcCNCpU6cARmaMMY1fIFsM24COXq9T3bJyRGQkcD8wTlULqjqRqk5V1XRVTW/dunW9BGuMMU1VIBPDD0B3EekiIlHAJcAM7woiMgB4EScp7ApgbMYYY1wBSwyqWgxMAD4HVgLvqOovIvKwiIxzqz0JxAPvishPIjKjmtMZY1wrs/ZTUFwS7DBMIxLQMQZVnQnMrFD2oNf2yEDGY0xjkFdQzLEPfMb/u7g/5w6o6X4OY3xjTz4bE6L6pjSnZbNfp+t+d/HWGmob4ztLDMaEqLjoCJY8OJqHznGeEw3x+TBNA2KJwZgQ16NtQu2VjPGDJQZjGonv1+dw5ztL2e7OxGrMkbLEYEyIS4z5dZzh/R8zeWzmyiBGYxoDSwzGhLi+KYn88+LjPa8/XpbFul0HghiRCXWWGIwJcSLCeQNSy82d9Jtn5pJ7uCiIUZlQZonBmEYiPa0Vw7olAVBQXMrxf/mCVTv2BzkqE4osMRjTSISHCS9fNZjk+GhP2eRPV3GgoDiIUZlQZInBmEYkNiqchfeN4LQezuSSc1Zn0/ehz3nwo+WoPehgfGSJwZhGJjxMePy3x5Ur+/f8zXS5dyYrs6xrydTOEoMxjVCHFrFsfHwsC+8bUa78rKfn2h1LplaWGIxppESEtokxrH9sLOOO7+ApH/mPb/jtlHn85X+/sCHbkoSprEGu4GaMqTvhYcJTFznPOcxYuh2AH7fs48ct+8gvKq3U7WSMtRiMaQIiw8N4+pL+vHHDEK4c2pmxx7UDYPqiLSzZspdt7jQaZQPUJaU2UN2UWYvBmCZCRBjWLZlh3ZL5eNl2Zv68A4Dzpnxf7THd2sRz/cldOLVHa1JaxAYqVBNklhiMaYKG92zDuf078OFP22ust27XAe7978+e19cOS+NPY3oSExle3yGaIJJQv7c5PT1dMzIygh2GMSEt93ARqkpEeBjhIuw7XMijn6zk42VZleqeNyCF64Z1oU+HRMLCJAjRmrogIotVNb3KfZYYjDG1WZm1n7Oenlup/PIhnbhiaGe6tYknMtyGLEOJJQZjzFFbmbWfif/9maVb99VYLyoijKuGdmZg55a0TYymoKiUvIJi2jePoWPLZrSMiwpMwKZGlhiMMXUm91ARU75Zx6c/72DLnkNHfJ6oiDBO79Gaa4alkdIils5JcXUYpamNJQZjTL1RVQ4UFLNt32E+X76T1xduJjuvgLaJ0bRvHsvanXkcLCzx6VxJcVFER4SxPTefqIgwjktpzmk9WlOqSlFJKSN6taW4RGkWFU7rhGjaJsbU89U1XpYYjDFBp6qs2XmAguISMjbt5bPlO8g+UMDG3QeP+Jz9UptzSvdkCotLKSwu5Q+nd6Ndc0sWvrDEYIxpsFSVrXsOszMv37NM6fz1u1m2LZdmUeEkxETy1cpdFJeWsj77IB1bxbJ1T+3rWvdoG8+m3Ye4dlga2/YdZlTvtgzs1JLWCdF2uy2WGIwxjcy6XXlMmbOe1gnRxEdFMHP5Dr9mju3WJp6Nuw9ycrdkduTmM6p3W3q2T6C4RGkeG8lJ3ZKIjmjcycMSgzGmScg9XMS2vYcpKC5hQ/ZBtu49xC/b9zNrxU7aJESzK6/Ar/P1S23OssxchnZtRXGJM86xbtcBBnZuydjj2tO7fSLFpaUUFittEqNJiI6gdUI0Ig3/+Q5LDMYYAxQWl7I++wB7DhZSWFzKgo05fLlyF2lJcURFiGeakLrQNTmO4lJly55D9EttTlGJUlJaSlGJknOggJG92rJjfz7HtksAoKiklKJi5Zg2cRwuLCUuOpyk+CgSYyLp0CKWiDChVCE6IozwMCEsTIiLCqdFsyO7/dcSgzHG+Ci/qITl23IpKXXutgoPE6IiwogMD2P9rgMs3LiHT5Zl0bV1HJHhzof0T1v3kRATQV5+YJdR/U2/9jx/2cAjOramxGBzJRljjJeYyHDS01pVuW9wWisuOaET/7y4f5X784tKyNx7GFVFRNif7041EuYkkIhwYfWOPAqLS9mw+6BnfW5VZcGGPXRsFUtpqTJ37W7at4hh3rocwBkT2XeoiD0HC0ht2YySUqWkVGnZLLJefgeWGIwxpo7ERIbTrU18jXV6tkussvyGU7rWR0hHxCY3McYYU44lBmOMMeUENDGIyBgRWS0i60RkYhX7o0XkbXf/QhFJC2R8xhhjApgYRCQceB44C+gNXCoivStUux7Yq6rdgH8CfwtUfMYYYxyBbDGcAKxT1Q2qWgi8BYyvUGc88Jq7/R4wQkLhSRFjjGlEApkYUoCtXq8z3bIq66hqMZALJAUkOmOMMUCIDj6LyI0ikiEiGdnZ2cEOxxhjGpVAJoZtQEev16luWZV1RCQCaA7kVDyRqk5V1XRVTW/dunU9hWuMMU1TIB9w+wHoLiJdcBLAJcBlFerMAK4G5gMXAF9pLXN2LF68eLeIbD7CmJKB3Ud4bKiya24a7JqbhqO55s7V7QhYYlDVYhGZAHwOhAOvquovIvIwkKGqM4BXgP+IyDpgD07yqO28R9xkEJGM6uYKaazsmpsGu+amob6uOaBTYqjqTGBmhbIHvbbzgQsDGZMxxpjyQnLw2RhjTP1p6olharADCAK75qbBrrlpqJdrDvn1GIwxxtStpt5iMMYYU4ElBmOMMeU0icTQFGd19eGa7xCRFSKyTES+FJFq72kOFbVds1e980VERSTkb2305ZpF5CL3b/2LiLwZ6Bjrmg//tjuJyNcissT99z02GHHWFRF5VUR2icjyavaLiDzj/j6WiciRrfXpTVUb9Q/OMxPrga5AFLAU6F2hzh+BF9ztS4C3gx13AK75DKCZu/2HpnDNbr0E4FtgAZAe7LgD8HfuDiwBWrqv2wQ77gBc81TgD+52b2BTsOM+yms+FRgILK9m/1jgU0CAocDCo33PptBiaIqzutZ6zar6taoecl8uwJmiJJT58ncGeARnOvf8QAZXT3y55t8Bz6vqXgBV3RXgGOuaL9esQNn6mc2B7QGMr86p6rc4D/xWZzzwb3UsAFqISPujec+mkBia4qyuvlyzt+txvnGEslqv2W1id1TVTwIZWD3y5e/cA+ghIvNEZIGIjAlYdPXDl2ueBFwhIpk4D9TeEpjQgsbf/99rFdAnn03DIyJXAOnAacGOpT6JSBjwD+CaIIcSaBE43Umn47QKvxWR41R1XzCDqmeXAtNU9SkRORFnmp2+qloa7MBCRVNoMdTZrK4hxJdrRkRGAvcD41S1IECx1ZfarjkB6AvMEZFNOH2xM0J8ANqXv3MmMENVi1R1I7AGJ1GEKl+u+XrgHQBVnQ/E4Ew211j59P+7P5pCYvDM6ioiUTiDyzMq1Cmb1RV8nNW1gav1mkVkAPAiTlII9X5nqOWaVTVXVZNVNU1V03DGVcapakZwwq0Tvvzb/hCntYCIJON0LW0IYIx1zZdr3gKMABCRXjiJoTEv3DIDuMq9O2kokKuqWUdzwkbflaT1NKtrQ+bjNT8JxAPvuuPsW1R1XNCCPko+XnOj4uM1fw6MFpEVQAlwt6qGbGvYx2u+E3hJRG7HGYi+JpS/6InIdJzknuyOmzwERAKo6gs44yhjgXXAIeDao37PEP59GWOMqQdNoSvJGGOMHywxGGOMKccSgzHGmHIsMRhjjCnHEoMxxphyLDEY08CIyDQR+bi618bUN0sMxnhxP4TV/SkWkS0i8i8RaRns2IwJFEsMxlQ2G2gPpAE3AOcAU4IZkDGBZInBmMoKVHWHqmaq6hfA28Dosp0icq278E2+iKwRkdvdSfrK9jd3WxlZbp2VInKxuy9JRKaLSKaIHHYXzznqJ1WNqUuNfkoMY46GiHQFxgBF7uvfAQ/jTOW8GGdivpfc/c+563jMBFriTE2wBjgWZ74e3P/+iLMmxH5gJPCiiGxR1S8DdFnG1MgSgzGVjRGRAzhz8ZR9oN/h/vfPwD2q+p77eqOITMZZBfA5nA/6E4E+qrrSreOZtE5Vt+HMU1VmqogMx5kq2hKDaRAsMRhT2bfAjUAszgpoxwDPiEhrnOmNXxSRf3nVj8BZVhFgAJDllRTKEZFwYCJwMc5iKtE4S1TOqfvLMObIWGIwprJDqrrO3b5VRL7GaSmUJYObgO+P8Nx34cz+eRvwM3AAeAxoc+ThGlO3LDEYU7u/4Cx9OhVn/eBjVPXf1dRdArQXkV7VtBpOBv6nqv8BcMckegD76jxqY46QJQZjaqGqc9z1DB7AmQv/WRHZhzPIHAkMBFJU9XGccYKFwPvuegBrgG5AnKp+6L6+WEROBnbjDGJ3wUkoxjQIdruqMb55CmfJyFnAdcCVwFJgLs54xEYAd13hs4B5wOvASuBpnHEEgL8Ci3BaIN8CB4E3AnURxvjCFuoxxhhTjrUYjDHGlGOJwRhjTDmWGIwxxpRjicEYY0w5lhiMMcaUY4nBGGNMOZYYjDHGlGOJwRhjTDn/Pz7PiwixrasVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAELCAYAAADKjLEqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5KElEQVR4nO2de5wdVZXvvyudB3RAkjQBIY8OIOqAeBF7EIRBHuoExIDKaLB5iRgJoiigA+bKVTRwnUFmkEEhOmEYujHiC6NmZFB05uIo0kHeTCRAEoIiMQgoQULCun/sqjnV1VWndp1TVeecnPX9fOpzqnbtqlpVp2r/9l77JaqKYRiGYWQxrtUGGIZhGJ2BCYZhGIbhhQmGYRiG4YUJhmEYhuGFCYZhGIbhxfhWG1AEO++8s86ZM6fVZhiGYXQUK1eu/L2qTveNv00Ixpw5cxgZGWm1GYZhGB2FiKzNE99cUoZhGIYXJhiGYRiGFyYYhmEYhhcmGIZhGIYXlQuGiMwVkVUislpELkjY/w8iclew/FpEnq7aRsMwDGMslQqGiPQAVwFHA/sAJ4rIPtE4qvoxVd1fVfcHrgS+XYYtw8MwZw6MG+d+h4fLuIphGMa2Q9UljAOB1ar6iKpuBpYBx9WJfyLwtaKNGB6GBQtg7VpQdb8LFphoGIZh1KNqwZgBPBbZXh+EjUFE+oE9gFtT9i8QkRERGdmwYUMuIxYtgk2bRodt2uTCDcMwjGTaudJ7PvBNVd2atFNVl6jqgKoOTJ/u3VERgHXr8oUbhmEY1QvG48CsyPbMICyJ+ZTgjgKYPTtfuGEYhlG9YNwB7C0ie4jIRJwoLI9HEpFXA1OBn5dhxOLF0Ns7Oqy314UbhmEYyVQqGKq6BTgbuBl4ELhRVe8XkYtFZF4k6nxgmZY0f+zgICxZAtOmue0ZM9z24GAZVzMMw9g2kG1hTu+BgQFtZPDB666D006Dhx+GPfcs3i7DMIx2RkRWquqAb/x2rvQunQkT3O+LL7bWDsMwjE6gqwVj4kT3a4JhGIaRTVcLRljC2Ly5tXYYhmF0AiYYWAnDMAzDh64WDHNJGYZh+NPVgmEuKcMwDH9MMLAShmEYhg9dLRjmkjIMw/CnqwXDXFKGYRj+mGBgJQzDMAwfulowzCVlGIbhT1cLhrmkDMMw/DHBwEoYhmEYPnS1YJhLyjAMw5+uFoybbnK/H/4wzJkDw8OttMYwDKO96VrBGB6Gj3yktr12LSxYYKJhGIaRRtcKxqJF8Pzzo8M2bXLhhmEYxli6VjDWrcsXbhiG0e10rWDMnp0v3DAMo9upXDBEZK6IrBKR1SJyQUqcd4vIAyJyv4jcUIYdixdDb+/osN5eF24YhmGMZXyVFxORHuAq4C3AeuAOEVmuqg9E4uwNXAgcoqp/EJFdyrBlcND9nnwyqEJ/vxOLMNwwDMMYTdUljAOB1ar6iKpuBpYBx8XifAC4SlX/AKCqT5ZlzOAgTJ4MH/sYrFljYmEYhlGPqgVjBvBYZHt9EBbllcArReRnIvILEZlbpkE9PbB1a5lXMAzD2Dao1CXlyXhgb+BwYCbwnyKyn6o+HY0kIguABQCzm6ipNsEwDMPwo+oSxuPArMj2zCAsynpguaq+qKqPAr/GCcgoVHWJqg6o6sD06dMbNmj8eBMMwzAMH6oWjDuAvUVkDxGZCMwHlsfi3IQrXSAiO+NcVI+UZVBPD2zZUtbZDcMwth0qFQxV3QKcDdwMPAjcqKr3i8jFIjIviHYzsFFEHgB+AnxcVTeWZZO5pAzDMPyovA5DVVcAK2JhF0XWFTg3WErHBMMwDMOPru3pHTJ+vLmkDMMwfOh6wbAShmEYhh8mGCYYhmEYXphgmGAYhmF40fWCYXUYhmEYfnS9YFgJwzAMww8TDBMMwzAML7peMGxoEMMwDD+6XjBsaBDDMAw/TDDMJWUYhuGFCYYJhmEYhhddLxhWh2EYhuFH1wuG1WEYhmH4YYJhLinDMAwvTDBMMAzDMLzoesGwOgzDMAw/ul4wrA7DMAzDDxMMc0kZhmF4YYJhgmEYhuFF1wuG1WEYhmH4UblgiMhcEVklIqtF5IKE/aeJyAYRuStYzijTHqvDMAzD8KNSwRCRHuAq4GhgH+BEEdknIerXVXX/YPlqWfYMD8OyZfDb38KcOW7bMAzDSKbqEsaBwGpVfURVNwPLgOMqtgFw4rBgAfzpT2577Vq3baJhGIaRTNWCMQN4LLK9PgiL8y4RuUdEvikis8owZNEi2LRpdNimTS7cMAzDGEs7Vnp/D5ijqq8FbgGuS4okIgtEZERERjZs2JD7IuvW5Qs3DMPodqoWjMeBaIlhZhD2P6jqRlV9Idj8KvD6pBOp6hJVHVDVgenTp+c2ZPbsfOGGYRjdTtWCcQewt4jsISITgfnA8mgEEdktsjkPeLAMQxYvht7e0WG9vS7cMAzDGMv4Ki+mqltE5GzgZqAHWKqq94vIxcCIqi4HPiIi84AtwFPAaWXYMjjofs86C559Fvr7nViE4YZhGMZoRFVbbUPTDAwM6MjISEPHXnghXH45vPBCdlzDMIxtCRFZqaoDvvG9XVIi8joR+baI/F5EtojIAUH4JSIytxFj24Fx4+Cll1pthWEYRvvjJRgicijwc+DVwA2x414CzizetGowwTAMw/DDt4Txf3H1DvsC58b23QkcUKRRVSJigmEYhuGDb6X3AcA7VVVFJF7p8Xsgf7vWNmFcIJmqTjwMwzCMZHxLGH8GelP27QY8U4w51RMKxpw5bt3GlDIMw0jGVzBuAz4aDB4YEpY03g/cWqhVFXLvve533TpXyrAxpQzDMJLxFYxP4dxSdwfrCpwqIj8BDgI+U4555XPLLWPDbEwpwzCMsXgJhqreDRwG/A5YBAhwdrD7Taq6qhzzyueZFGeajSllGIYxGu+e3qp6J3CUiGwHTAOeVtVNGYe1PVOmwNNPjw23MaUMwzBGk3ssKVX9s6r+ZlsQC4C5CV0ObUwpwzCMsXiVMETkoowoqqqfLcCeyhkYcLPuTZ4Mzz0HU6fClVfamFKGYRhxfF1Sn66zL2wt1ZGCEfa9OP541zLq4otNLAzDMJLwrfQeF1+AnXEjyd4HvKJEG0tlXNUDvBuGYXQoDQ9vrqpPAf8qIn3AVcAxhVlVIdGe3tFfwzAMYzRF5K/DJrcdSVwwbFwpwzCMZIoQjGOB/JNqtwlhHYaVMAzDMOrj20pqaULwROA1wH7A/ynSqCqJ12GYYBiGYSTjW4dxJLXWUCF/BtYC/whcV6BNlWJ1GIZhGH54CYaqzinZjpZhgmEYhuFH1zcqNcEwDMPwI7WEISK5Wj6p6n/6xAvm/74C6AG+qqr/NyXeu4BvAn+pqiN5bMlDfNIkEwzDMIxk6rmkfsrYeoskJIjXkxnRzadxFfAWYD1wh4gsV9UHYvF2BM4Bbve4flNYpbdhGIYf9QTjiBKudyCwWlUfARCRZcBxwAOxeJ8FPg98vAQbRmEuKcMwDD9SBUNV/6OE680AHotsrwfeEI0gIgcAs1T1ByJigmEYhtEmtFWlt4iMAy4HzvOIu0BERkRkZMOGxvsNmmAYhmH44T2WlIjsC5wBvArYLrZbVfUoj9M8DsyKbM8MwkJ2xHUG/Km42uiXA8tFZF684ltVlwBLAAYGBhpO5q2nt2EYhh++Pb3fAPwHsAbYG7gHmArMxrmVVnte7w5gbxHZAycU84H3hjtV9RncKLjhdX8KnF9mK6l4pbeNJWUYhpGMr0vqEuDbwL64VlHvDzrzvRnXOupzPidR1S24ucBvBh4EblTV+0XkYhGZl9P2QjCXlGEYhh++LqnXAqdSa2bbA6Cqt4rI54BLiVVep6GqK4AVsbDEGf1U9XBP+xrGBMMwDMMP3xLGROA5VX0JeArYLbJvFa7eoSOxOgzDMAw/fAVjNa5JLLj6i9NFZFzQqul9wBNlGFcF1nHPMAzDD1+X1PeAw4EbcPUZPwCeBbYCOwAfKcO4KjCXlGEYhh++o9V+OrL+IxE5CHgX0Av8UFX/vRzzyscEwzAMw4+G5vRW1V8BvyrYlpZgLinDMAw/vOowROQ7InK8iEwo26CqsUpvwzAMP3wrvV+F64fxhIh8KXBJbROYS8owDMMPL8FQ1X2AvwSuB94J/ExEHhKRi0RkzzINLBsTDMMwDD+8Bx9U1ZWq+lFc89q344b5+FvgIRH5f+WYVz4mGIZhGH7kHq1WVbeq6gpVfS/wDuA3wBsLt6wiQsEIx5AywTAMw0gmdyupwAV1MjAI7AX8FvhCwXZVRljpbYJhGIZRH9/RaqcC78EJxUHAJuA7wFnAj1U7N5kNSxhbt7rfzr0TwzCMcvEtYTyBG3DwVtwghN9W1U2lWVUhJhiGYRh++ArGIuAGVf1Nmca0glAwtmxxvyYYhmEYyfgODXJZ2Ya0irAOIyxh2ARKhmEYybTVnN6tIO6SMsEwDMNIxgTDBMMwDMMLE4xYHUYoHIZhGMZoTDCshGEYhuFF1wtGvNLbShiGYRjJ+A5vfpyIvC+y3S8iPxeRP4rIN0VkB98LishcEVklIqtF5IKE/WeKyL0icpeI3CYi+/ieuxGshGEYhuGHbwnjfwPTI9uXAzOBJcBhwKd9TiIiPcBVwNHAPsCJCYJwg6rup6r7A38XXKs04oJhJQzDMIxkfAVjL+AeABHZHjgGOFdVzwM+iRuE0IcDgdWq+oiqbgaWAcdFI6jqs5HNyUCpXenild5WwjAMw0jGt6f3dsDzwfobg+PCebxXAbt7nmcG8Fhkez3whngkEfkQcC4wETgy6UQisgBYADB79mzPy4/FShiGYRh++JYw1gCHBuvHAStV9ZlgexfgmaSDGkVVr1LVvXDzbfzvlDhLVHVAVQemT5+eFMUL6+ltGIbhh69gXAN8WkRGcCPU/nNk38HAA57neRyYFdmeGYSlsQw43vPcDWEljPIZHoY5c9yznjPHbRuG0Xn4jiV1hYj8Hje0+RdV9V8ju3cErvW83h3A3iKyB04o5gPvjUYQkb1V9aFg823AQ5SItZIql+FhWLAANgVjG69d67YBBgdbZ5dhGPmRqqeyEJFjgH/EDZe+VFUXi8jFwIiqLheRK4A3Ay8CfwDOVtX7651zYGBAR0ZGGrLn0Udhzz1h0iR44QUX1t8PixdbglYEc+Y4kYjT3w9r1lRtjWEYUURkpaoO+Mb3nUDplcAUVf1lsL09cBHwGuBmVf0n3wuq6gpgRSzsosj6Ob7nKoLvftf9hmIBlgsuknXr8oUbhtG++NZh/BNwQmR7MXAernXUPwStmjqO4WH45CeT923aBIsWVWvPtkhaA7YmGrYZhtEifAXjfwE/AxCRccApwN+q6uuBzxE0b+00Fi2C559P32+54OZZvBh6e0eH9fa6cMMwOgtfwdgJ2Bisvw6YCnwz2P4psGexZlVDliBYLrh5BgdhyZLadn+/2+50V1/RLb+sJZnRCfgKxu+AVwTrbwUeVtWwA94OwJaiDauCeoJgueDiiIrDmjXbhlgsWODqulRrdV6NJvJFn88wysJXMJYDl4rIZbi6i29E9u0HPFK0YVWQ5C4B6OurPhdsOczOYdGiWjPhkE2b4NRTG/v/0s5ndWhGu+E7NMgFuOFB/honHpdE9s2jNkxIRxEKwimn1Ppf/MVfwAO+3RALwvoqdBZprsywL0/e/89akhmdglcJQ1WfU9UPBKPInq6qz0X2vVFVLyzPxPIZF3kKrei4ZznMzsKnbivP/2ctyYxOIdcESiIyTUTeJiInB7/TyjKsCsKc/ZZIDcxDD412J1ThKrIcZmeR5sqM4/v/WUsyh7llOwBV9VpwzWefB16KLM8Dn/U9R1nL61//em2E/n5VV804eunpURVR7etTnThx9L7eXtWhoYYul9uO/v5ir9NKwnvaVhgaUp0wwd3TuHHN/39Ll44+ruh3rN0ZGnLfVtnfmjEa3Agb/jrgFQk+GgjEV4A3Aa8Kfr8CbAU+kueiRS+NCoZI8oeetRSdkHfDx7KtCYaq6r77unu69NLm/78//nHbfEa+dEOmqR3JKxi+LqkzgSvU1WP8h6quCn4/AHwRN4Jtx9GojzivqyirqB32VdhxR7c9dWpn9VXoVleCBsOwHXus+7922slt77RT/v+v20dJNrdsZ+ArGHOAH6Ts+0Gwv+Pw9UXHySM0vm3sBwdh4UK3/vGPd5ZYdGsfglAwRNz/NW+e237mGVfhnecZdLtgWMV/Z+ArGBtxAw0msS+1XuAdRZiz32EH/2PyVkbmaQG1/fbu989/9j9/mLsXgfHj3W+VufxubuEVCsbWre55f/3rtX15hbPbBcMq/jsDX8H4DvDZoHXUeAARGS8iJwIXA98qy8CyGRx0/TDSmDChtt7IsBZ5itqhYNQb3ypKNHcPY/sBVCEa3exKCAXjpZecQG7ePHp/HuHs9nlYwsxb+L3tumtnuWW7BV/BuBC4C7gOeF5EfodrITUM3A2kjPnaGYyv033xjW+srTcyrEWeovY997jfv/97v1JCUu4+pOxcfliyCRPNOFmuhG2h3iNawmhWOLu9hAHu2+rvd+tPPpnfrdcs28I7WTq+teOAAMcCn8e1jvo8cAzBJEytXBptJRVy3nl+raMawbcFVLSZZjTewoWupYjI2OaWWa28RBp9IvnvKev+os8w6XgRd69J10q7/0bsLupcqqp77+1sv/325lv5rFvX3a2kVN3/EW+iXFVrwW5oqZgEZTSrbfelWcH427/1E4xGX56hIdXtt3fnmD49+TxpCU5cFKIvcdoxZTb/zbpm2v1FE8N69xo9tsiPuIwE4RWvcOf5r/9y52mmz86jjxYnGEULY1W0smlttzbrNcFogEWL/ASjmZdn3jx3jptuSt6fp09IaEe9nL5vYuWbuGSVKsLle99LPj6aGNa71+gzLvIjLiNB2Gsvd47bbnPbp546+rx5EurVq4sRjE7OKae9F2WVlNvl2q0kr2Ck1mGIyEsistVz6cjhzUOiFdv1aKYiV8T9plVu5mk+GNoRn2sixLdyPk+T2Hr1JVFuvTU7Tr17jT7jIivUy6icV3W/Yf3D61/vfo88Mn99V1F1GJ3caq3qprXROotxKSmhNesdTb1K74tzLJ8t18xyqVfpHaWZlyd8IdMShsWLG7MjKVHyTazyJC5hS6wsvvSl7MrCek0lo/dWZAJSRmIUF4xmWjrF34tGK2A7udXa4sXQ0zM6rKymtfHMUtJ3ac16E8hTHCliAeYCq4DVwAUJ+88FHgDuAX4M9Geds1mX1Oc/7+cKaqZY/653uXPccEN6nGOPbcyOpGK0j0vEtxg+NNSYyyxk69ax7pa/+quxx8VdJ2kNARpxtS1cWLyrZs4cd54f/chtX3652z7iiPznuvfe0f9vo7Z2ui/+0ENH21yWKy2rLm733TvDjdcstHMdBtADPIyb0nUirknuPrE4RwC9wfpC4OtZ521WML7whexEsKenqUvou9/tzrN0aXqcc891cY4/Pv2F7usbe1yazVmJTL2PJtpiKevjyhKcF14YKxhXXDH6mF12SbZ1/vz8CUhagrtwoeqkSfWvl4fwudx8s9u+7DK3ffjh+c91112j77PRRL+T6zBUVU85xdn8mc+Ue52sDNCqVeVev13IKxi5hjcvgAOB1ar6iKpuBpYBx0UjqOpPVDV0lPwCmFm2UT6uoIkTk8N9XQehS+qFF9KvEQ6zvmVLes/XK67ItjUky3ddb2iUL38ZzgpGCMvrzoi7eZKK+y++OHr72muT3WgDA+733HObd7WtWAGHHOK2h4eb7xTm8jRjXVJPPJHfnRR9Rs24lbaVOdTL7siY5ooM04L4+2k4qhaMGcBjke31QVga7wf+LWmHiCwQkRERGdmwYUNTRvlUeicl9HkqjdMEIyo4S5e6sK1bax/+1KkubPz4xj78eonM4CBceWX6/jDhyePnnzhxrN93S0KTiHhYWgKR1VggiXoJbni+MLFvhjTB+PWv84+tFRWMtOc9bVrtXdl5Z7ckiVInz6EePsOyOzKmZcimT3frZQpGJ3cQrFowvBGRk4AB4O+T9qvqElUdUNWB6eG/3CA+JYykBCtPpXFUMIaH3ccuAiedVEtc/vQnF+exQFIHB+FTn3Lre+zR2IcfTWSSXs53vjP92PCjXby4NmxJFqecMtZOH8FIS8DD55Ynga9XwR0KRhGE70Tab4hPK6VoAplW8nvmmdq7snGjW7JEqdOGHKlKMAYH4ZpratthSWxaMCVcWYLR6YN1Vi0YjwOzItszg7BRiMibgUXAPFWt48QpBp8SRrTZXZhDSGs5lJTDDY//5S/hfe9zH3saDz1UWw8T1kY+oAkT4I9/rP9yZn0Yc+a434sv9rtm2LQ0SpJgxK+bJRh57t9nILuTTsrOqfvi00oqy50Uvb/BQTj11LFxkp5jSJoo1TumHq3KBRfR4gz87H/3u2vrYUksfN/i44IVRSc3e4bqBeMOYG8R2UNEJgLzgeXRCCLyOuAanFg8WYVRPiWMcK6K+IB/SSTlcMMP4JZbshPpqNuqGcHYujV5QLxzznHrw8PwutfVP8fatU7gfJsXJn1oSbbnLWHkSUBCd14oGn19NXfeE0+4sCefrJ9T90lw0lxSSWS59eLPaMWKrLscS5IoNSIYrcwFF1HC8LU/6Rrh+1ZWCaOTmz1DxYKhqluAs4GbgQeBG1X1fhG5WESC2QT4e2AH4BsicpeILE85XWH84hfZccIh0LM6sMVzsmHCMzTktp99NvtakybV1sMXt5EPPy0B27jRVWgvWACPjynfjeXFF+Hpp/2umSQY3/hGbV3E5ejvvtvP1kZcUuDE4YQT3Ppll9XcZKtX1z8uFFSfBCe0Kc0VFeLTnj+eeDWSgCSJUiPvTStzwUUIhq/9rRCMTp/3o/I6DFVdoaqvVNW9VHVxEHaRqi4P1t+sqruq6v7BMq/+GZtjeBi+8pXseOGLVO9D3m230RXTPqWRJGZG2oWFH3zRL/CSJX49t/MSt3N4GM47b3TYxo1jc9BpgtBIpXdI2AksmjD4zDWycaNfgpNWwnjZy2pxfFspxROvRhKQJFFqRDBamQsuwiXla3/SsylbMDp93o+2rfSuiqR5DJJYv97ljOvldP/930eLxamn5kuUw6a7YcsoqL3U9ZrjNkKRlYqhuw7gk58c7cJZtCj544snCEWXMCBZMLbbLv95QuIJTlwwwu3wGrNm+bdSitpYr34sjb6+5Os0IhitzAUXUcLwtb8VJYxOb/bc9YLhm2sK/d31+Ku/qvm/FyzI/9IffbT7jX7k4RwZzzzTXk3woiJx8MGj90VdOL7PN0swGklAkgTjla+sf4yIS3yTiCc4oUB89KPOzrCPTJgByWNzNG5esZg4Mb1/TpZgJNXVVJULTrp2EYLha3/0GqENTz3ltstsVpun2XPbNcHN08uvXZdmenrn7cWctUyc6HpjN3JsOAT6fvs524aGVMePHx2n3lwTZSyTJ48dthtU3/zm2voOOyQf29/v/3yXLUseOferX3X73/e+/P/tWWe5Y085pXbe7bbLtiU6HH2955523+Hz2nVXf1uXL2/8Pzr77LHnC/etXZt8vaGh5Pc0vM/osCy77VZ8T/G0Humvfa1b/+AHmz9/eN6eHvfb1+eW8P0Ke5VHl3A+jnpD+OS1I2k06PB6WceW3Wufdh4apKylGcEYGqoNF9Euy5Qp9RPa+BARZdrS36961VVjw08/PfvYcH6LuOglLWedlfxxnHGGWz/ttPz/7Yc/7I6Nj0eVdb+qqkuWjA5L+kjjk/3El+nT/W296ab655o8OX1fPcF4+OHR4WlCkfQM9t3Xbd97r/99+JL2foeCfsYZ+c8ZT5x93s+0ff/yL83fY70EP9yuRxXjguUVjK53SQ0OwlveMjrMd7jzRklzeYQ8/XR9t0SVTfDWrYO//uux4dF5x8MWZHFmz3bP95MeE/j+678mVzR/+9tuvZlKb1/3goh77nPm1I4RSXYbRN0naTTqkoqz447wjnek71+2LH1f1CUVukqzXKvh+6VaP14zpL3DYaOEvC6ppKa0WdS7v6TGG3ldQ822NmvHJrhdLxjDw66yOkrZ48hEE9tGCHujNkvaOFJRZs2CG28cGx69h6TOelGf8eGHZ18n7OUeJ/QpJyXOWR9xfKjsLMIEZO1aOP/89HOEiVMWf/iDv8+5XgJ50EH1E7d6AhAVDN85TeLvV5G940PSKqbDJuXx/zvpv46GnXJKsa3+wjQgHJUhOiKDb7+UtIQ9Kmb1zpH2nbe0CW6e4ki7Lu1Uh1HFMnFizUXy0kvJcaZOrX+OmTNVr702+1oLFiS77EJfM6iefPLofXEXzs03N36v06a53/e+d/T/5uPf/cQninnWzbwzvj7nr31t7LGhK+3MM1VPPDH9GjvvPPZ84b67766F+Q5RH75ff/EXbrsMl1RaPVF4zZNOGj0lcNz2CROS69aaXUI34xVXZM8ymeUayuMWi38zSUP7R/+bosDqMPKRZ56HdlrCl/XFF5P3Dw7Wrzu48krVZ5/Nvs6sWcnhUREJh24Hl7DF+d73sq8zeXL6BxK956z5zKMf8YUXurA8dRjxZbvtmn9nfIclj/9/YR3CGWfUF4yzzhp7vnDfypW1sDxC19en+upXu/VLLilnjvCrrx773x52mNs++GC/KYGbWeINIPr7XUYq3A4ry9OWetO3+tQVxZdwCP56/1PS9AbNYIKRkyJLGD6Vu0Ut4cv65z8n77/sMtWjjqp/vE/Ftc8SzlcObqKoON/6VvY5Tj5ZdWAgO96ECX6VtiKqL3uZ2z7uuNq+eK42a5k8ufl3JmlCqngCfN11o4855JDa+zR5supBB6WfPykBD/fdfvvo6+ZJhHfbzf3GE9Z6paakiavSxOaJJ2rnCznkkFpYWd9O+I5cckltu5FvNy0jkPc5x9+VPO9Ss5hg5CTpz83KWaTFrZdAl/HCq7oJmZL2v+c9tRZGzSw+uem3vrW2Pm/e2Gec5G6JuxOKSiCy7H372/3OEyaSO+6Y/M408l+Fx8ZLPBMmqH7gA/XfwXrv5PXXj7Ux3BeKJjihXbjQ3+56iWhSYumTUIrUJud6/HEXtv32tXMcfHAx70HW8tJLqnfe2fjxSbNDhsKY9l/lSVfyPPdmMMFogKivFFR32sn/D4wmfEUk0L5L+NGluYymTHFNUauw5VWvqq3PnZv+XKPLfvsVb0eR7sXjj689xyR83Q1xH3XacfWazWYt9QQjvhTl90/K6fqWvMLm1mvXuu2oYLzhDbWwMt+F2bNVL764sXP39fnVNxS9lDFzoglGgwwNNf8xJc1TXdYS5jTqfRiDg9XYEn1uRx5Ze571cpvTpxdrQxG5t+iyyy7ud9q02v1EXStnnjn2mCy3Rllulg9+cKzbJ8/xaZ0Z85Yw8s77/sgjbj0qGKFb8oAD8t1DIwm2TyfOpCVOox1140u959fTU840uyYYDdCMzzG6lO13jb9cqqMr6Vppz7a2hB/v9OnJ70dSC58jjmi93VHbfZeoS9HnHGk53Tx1OyKqDz1Ue5YhoVAce6xfQhyK2pFHVvc84xR1naOOGvuehUI4Y0ZTSVwqeQWj6/thgH/79CzKGP01jbAtdr1OQEXY4zvTXqvJ2+cii513dr8bNrg2+PFnGe9Lowo/+UmxNjSKar748fG1RNLPIeLGDlu0aGz/l3pzxMeZPXv0SMzhDJR33unCHnvMjY8V/1+jE5n198MRR7j1W2/1u24j5H2ejbJ69eiBCWfOhLe+1a23yxzjJhgU13OyqsQ12imuXg/gIrj0Uthpp3KvUQRFjr673Xaw6675jmm2M2Y7US+BVHWJc1IntnAk1nDU5TTC9zf8z7ZsGdv5MBx0M5zxMSQ62dmaNbUJscpkXCyVDOd0CYUya+QGX9atGz2iwMqVtfv3GZa/CkwwSO852d/vPgrf3GsVicaUKU6YTj7ZvUzRyYnK4O1vhw9/uJzevu3KMcfAffe12orqWLUqX/y4oESHuxgchP33r398OJx3vZF0VV3J7uGHR4fHpyIo8n/af/+x4tDbmzwj58aNcPrpTjSuuCJbJH2Ip0NbtsBzz7n1dhEMb99VOy9l1GFE/bRhJ7VmW25U4V/dVq7V7naX3eemE//XsMK9XtPYvr5aXUfW4I1Zi2rxzyLaeGLWLHc/9ewMO9J9+cvNXztsfRVuX3HF2Mr8ceNqLSSLAKv0boy0YYhVay9MfAgMWzpjKbpFFuRret1NS2+v6t57u/WyR4EeGipXWJ991n3/PnGjjU/C4WwaWXxbexUlGnkFQ9wxnc3AwICOjIyUcu7hYVc0Bjdq6B//WMplOore3mor+Jtl+nRXeV0UM2bAb37jPt12pF6ldRXnnzTJzRD5yU/CJZeUZ0dvr/tv80445cvGjW4AwJ6efKMlT5hQfiW1SHPT2NbOIytVdcA3vtVh1CE+KqmJheOEE8aG+baOaQVFigXAkUe2d51O2bZliVE4nfCb3lSuLZs2uRGByyJM9NOG7886rkxUXcV71TPxVS4YIjJXRFaJyGoRuSBh/2EicqeIbBGRhKSpOopqbrutkSQO8+bB7rtXb0sruOGGYnJ3ZVHPtiIS8P7++vvDOc03by6/FPbss+Wdu1HBqIqNG93z9R1uvQgqFQwR6QGuAo4G9gFOFJF9YtHWAacBN1RpWxKtnKiknUkrTTz5ZLV2tIoim/BWTbMJuM/c3mEflniLpjIos8l3dBKtdifPxEzNUHUJ40Bgtao+oqqbgWXAcdEIqrpGVe8BWp6Ha+lEJW3M5Mljw9asqd9M0hhLvAlnuzN5cq1JbD3Wr3e/ZQtGby8cdVR55z/0UPcfVdHXA5wwNdM8t4oMbtWv7Azgscj2+iAsNyKyQERGRGRkQ9FO6oA8PVfLpLcX9omXw0rANyf12c+ODbvjjuaundV2f1vkgx8spv1+Vai6/j9hCSKLaK/lkBkNfe3p53/Na+rHaeb5hg0bGilRNloq+ad/auw4qCaD22F5nBqqukRVB1R1YPr06aVcI+y5WlRPzjxEOwtefTX87nflX1O1cYFsxk0zYUJy56hm6AQ3wpe+BEuXZtcJtAubNrl3JGtO8JCkoVLCjmhFMDgId99dP87SpcVdz5dJkxrL4M2e7TrKNkqWq7AIqhaMx4FZke2ZQVjbMjhYfaXXxIlw3XW17ZNO8v9Im2H33Z1AFpl4H3lkdpyZM51oFEm7NnmNMzjo3HmdIhrN8vTTxZ1reBh+8IPizlcURxzh/tM8jBvnEvzoaBF5vsO+vmxXYRFULRh3AHuLyB4iMhGYDyyv2IbcVF35vXkznHNObbuq3PL557uXbt99izvnpEnZcXbZpf7HUbSYFE0RGQprYJGfc87JrjeLNouvih/+MH9JKvzGo4Jx2GG1fVlejne/O9/1GqVSwVDVLcDZwM3Ag8CNqnq/iFwsIvMAROQvRWQ98DfANSJyf5U2JtGKyu94iaIKt9i73uV+G/H7po23dcst2ceOG5csCqGvPCtRiB9btTtq0iTXwasZrIFFfnxK3Z3SLH7rVidu3/lOLSys77nvvuxMyXXXVdQXI0+38HZdihgapB7NzJcRnSKz0SW0oZlZvXwmh3r8cXetcF7lPMtee9WGVsk75tYhhyTPyeA7Mc3ll6vusENtuxVjXjUyH0NR75gt284SHbcq/I52393v2Eamb8XmwyiesPK7v9/lXvv74W1v8zv2vPNqf2keP3W8RDE4CNde25ivu6/Pr/Lvu991v42UMMJRRc88M3/z2p6e5D4cTz3lfrNKDF/4Qq34Du5ZV81ttzV3/OAgXHPN6LBOqLg3iiXa6TJ0T/3mN37HVuLWzKMu7bqUXcJIIpzCM2vZbrvaQIZJucgJE8ZOLzphwuhRK6PkGXAtPohiVvyZM128uXMbzyHlyd2HcQ8/vH6pxGcQuyLnVM473Wujo64mUdQ92OKWbiq1VVHC8I7YzksrBCPv/MUhSaPiRoUkOsF8eHyUPNNghh9M/HxpSzjt67x55b/cfX21hDlrbuUixSBrCedO9k1omrEtaZrTqu5zW10mTBjtysw7v3mnLmnT5mZhglERL3+5/58ZJsT1OP10F/crX6mFhcdHacQ/HwpTVrxZs9w1TjihvBf7mGPa218/bZp7BqGwZ8Xv6/Ova0k6Nk6r77+TlzCz9cILtbBueKa77daYWLhnY3UYlfChD/nH9WkBEzY/zZpZq5HWNOHgZFmEPbijTWHT/Oh5/evh9LX77OM/qGMrhs4IOy6G/SOyhp7YuNENgNdI09+NG+u3bGn35sTtxg47uP8t2kQ7q+WQT7PvdmDixPROtWefXU0fDOjgnt7tRlriJuLXA/PRR93vhz9cf7jiRoYr6enxS6AvushdN1rpPWNGraI9bDrb3w/XX5/vJQ0r8C67zH/+glZU+qrW1oeH4cc/zj7mxRcbH4Ii2t8mzskn1xpa9PV13thTjdDXN/qe8xBW+kafU9aAfHkyfq0m7Ru+8soKjchTHGnXpWqX1NBQtt89uvicLz7lZ9RlkxTfty4jr+unt3dsE9F45XnaMxAZ3by1HZa8LrwpU2r3mLe+KL5MnuwXL61hwtKlo595p06Rm/f/Ct+vvO9utK7Q9///znfKvZ+yp/INl0bB6jDKJ09CsvvuzZ8vjax6idCnmzfhS2qVFK9USztnX9/YD71VCV3e1k7hMSHN2j17tt/zT0roQPX66xt/7zp1CZ9F3nudODFZeLPql8rM4PT1qZ5/fjXPzeow2pg87Z3PP7/Y80XJ8r+GbqC8bqxwxrQo8fH202x+6qmxfVZU/a/twxe/CENDtWuk0ciAiNFjmu19/dhjtbqQoaH0eGnPMl6H0S6jJ5dJ6L7N+01MmFBzkUbduVm9wf/0p3zXycMOOyS/nzvuWFsP6/aapYq5MAC8laWdl3YpYfT1jd23++7Z6t9oCeO7383OeYQ5tqGhxlvzhEu0tVeazUltwYvOGc+cOfqZ5i1J9PSkP4tx42rnrde7vq+v1jQ67VxhE92QadOyn1k0/FvfGvss8zQTrefSef/7x16vHZbQ/dnIOxNvol7GkrfUmRR/0qTiWyL6tMRMAnNJlU/SSxm6bOrty3u+cD2NT3wi/4sU7QfS1+c3ZEj0Y/Z5Bj7316y7x7d/Sfz+QtdFvYQlWmeTJgZZzyLJzuuvr78/fi/Llyf/776JaTThDUU1dMFcfXU+8amXQSja5djbq7pw4dhnmlUf0N9fjduuiGuEHVV32qk4mxrBBKMikjrgqebLedc738KFo49NqnT26QGd57r1cupJYpD2DPLeX7MfSb0SX7yEEPaij9oEYxO98H7TEsMkIU57fmmVsUnPLHrcihXpz9InF530f5x5ptt36qn5cuJJmYvwGZWRSEdLGuGzOuqo7OOKEq96GYUiSzHHH59/pID4Pcbrb/JggtFifBOYevjk3n0+0ry9P+t9bI2+kPWIPpt6rp16H45q+vPyKR2o1hf5tH1xd1O95xe1M57wRInn+F/2svTn7uNiTMosfOhDbt/UqfmeNdR6UcfFrgjxz/pehoZqpaN6z7lZtyvUGovU+waLuueddvKveI+6l+PvZVaGLQ0TjBbTaAkj7zmyclJJCVoVtuchPH9I3txh1pArvuJdL56vuynr+WUlQGn1JePHZ5fcfBNdVdWPfCT7udYrbcbfhbLqDKK94PNco14rvbBkW284l/h/klaCrrrFWvxdGxoaO/5aI8ODmGC0mEbqMOL4JHRZOalGKsGKsD3PteIJar2PMM1lVA9fAcyK5+tuqvf8sq5R796ThhBp5D5VVT/2MbcvrYQRHuMrts0mnGnXid5znmuEIl/PVRqvx0sqNWVRL3MTni9vHWF86elJt6uozJ0JRhuQx7efhM/L0Ig7ogrbfa+RlLAmVXQmJS6+dvkKoE+8PHUZSc8v6/is0lXe+4TkZxT2C5g/v/49+yZIzdQZ1Ds2+lzzXCNLXIuiXr1ZlEZbJ2ZliIpwfauqCca2QDMJmM/L1mqyXDf1cpR5hdBXALPiNZuja6aEkSUYUfuTnmeUsGXdpZfWv2dfsW20hCHiMgg+zzXPNaoSjLyl8az3OmyS75tRsxJGE8u2JhiqjSdgjdRdVI1P7qioHFRRNOuu86nDaDYR9LExOnR93pZtSXHz1C8kuVh8bM5zjSrfj0ZK40W5fYs6jwlGl1BlfUPRNJOrLKsC3odm3XVZxye1vIk2A87Cpy4mXuFbxDvj07TWJ/edJUzROL4t4NqRoty+RZzHBKOLqKK+oQwazVV2iiA2QzP/aVaprGwRTisJRCcFK4pufT+Kpu0FA5gLrAJWAxck7J8EfD3YfzswJ+uc3SoYnUwjuUpLDOqTJQhVuPmq/M/s/WievIIh7phqEJEe4NfAW4D1wB3Aiar6QCTOWcBrVfVMEZkPvENV31PvvAMDAzoyMlKi5YbR/gwPu4myovMm9Pa6wSAHB908K0lzkfT3uwESje5DRFaq6oBv/KpHqz0QWK2qj6jqZmAZcFwsznHAdcH6N4GjRFoxlY5hdBaDg2NHCg7FApJHu+3t9ZvgyzCgesGYATwW2V4fhCXGUdUtwDPAmLm3RGSBiIyIyMiGDRtKMtcwOotwOPWXXnK/0VkRswTFMLIYnx2lPVHVJcAScC6pFptjGB3B4KAJhNE4VZcwHgdmRbZnBmGJcURkPLATkDENimEYhlE2VQvGHcDeIrKHiEwE5gPLY3GWA6cG6ycAt2qVNfOGYRhGIpW6pFR1i4icDdwM9ABLVfV+EbkY17xrOfDPwPUishp4CicqhmEYRoupvA5DVVcAK2JhF0XW/wz8TdV2GYZhGPWp2iVlGIZhdCiVdtwrCxHZACR0SfJiZ+D3BZpTBWZzNZjN1dGJdm8LNver6nTfg7cJwWgGERnJ09OxHTCbq8Fsro5OtLsbbTaXlGEYhuGFCYZhGIbhhQlG0Fu8wzCbq8Fsro5OtLvrbO76OgzDMAzDDythGIZhGF6YYBiGYRhedK1giMhcEVklIqtF5IJW2xNFRJaKyJMicl8kbJqI3CIiDwW/U4NwEZEvBvdxj4gc0AJ7Z4nIT0TkARG5X0TOaXebAzu2E5Ffisjdgd2fCcL3EJHbA/u+Hox7hohMCrZXB/vntMLuwJYeEfmViHy/E2wWkTUicq+I3CUiI0FYu78fU0TkmyLy3yLyoIgc3M42i8irgucbLs+KyEcLtTnP9HzbyoIbx+phYE9gInA3sE+r7YrYdxhwAHBfJOzvCKa0BS4APh+sHwP8GyDAQcDtLbB3N+CAYH1H3KyK+7SzzYEdAuwQrE/ATQl8EHAjMD8IvxpYGKyfBVwdrM8Hvt7Cd+Rc4Abg+8F2W9sMrAF2joW1+/txHXBGsD4RmNLuNkds7wGeAPqLtLllN9Tih3kwcHNk+0LgwlbbFbNxTkwwVgG7Beu7AauC9Wtw09yOiddC27+Lm4a3k2zuBe4E3oDrCTs+/q7gBs08OFgfH8STFtg6E/gxcCTw/eCDb3ebkwSjbd8P3LQKj8afVTvbHLPzrcDPira5W11SPjP/tRu7qupvg/UngF2D9ba6l8Dl8Tpcbr3tbQ5cO3cBTwK34EqeT6ub7TFum9dskBXwj8AngJeC7T7a32YF/l1EVorIgiCsnd+PPYANwLWB6++rIjKZ9rY5ynzga8F6YTZ3q2B0NOqyA23XHlpEdgC+BXxUVZ+N7mtXm1V1q6ruj8u1Hwi8urUW1UdEjgWeVNWVrbYlJ4eq6gHA0cCHROSw6M42fD/G49zCX1bV1wHP4dw5/0Mb2gxAUH81D/hGfF+zNnerYPjM/Ndu/E5EdgMIfp8MwtviXkRkAk4shlX120FwW9scRVWfBn6Cc+dMETfbI4y2rR1mgzwEmCcia4BlOLfUFbS3zajq48Hvk8B3cOLczu/HemC9qt4ebH8TJyDtbHPI0cCdqvq7YLswm7tVMHxm/ms3ojMRnoqrJwjDTwlaPBwEPBMpflaCiAhu4qsHVfXyyK62tRlARKaLyJRgfXtcvcuDOOE4IYgWt7uls0Gq6oWqOlNV5+De21tVdZA2tllEJovIjuE6zr9+H238fqjqE8BjIvKqIOgo4IF2tjnCidTcUVCkza2qlGn1gmsh8Gucz3pRq+2J2fY14LfAi7iczvtxfucfAw8BPwKmBXEFuCq4j3uBgRbYeyiumHsPcFewHNPONgd2vBb4VWD3fcBFQfiewC+B1bhi/aQgfLtge3Wwf88WvyeHU2sl1bY2B7bdHSz3h99bB7wf+wMjwftxEzC1A2yejCtB7hQJK8xmGxrEMAzD8KJbXVKGYRhGTkwwDMMwDC9MMAzDMAwvTDAMwzAML0wwDMMwDC9MMIxtGhH5tIhosD4l2G7J6KeBDfsHNkxL2Kci8ukWmGUYXphgGNs6X8X13gY32uj/wfXYbRX7BzaMEQycnV+t1BrDyMH47CiG0bmo6npc58dSCHq5T1DVzc2eS1V/UYBJhlEaVsIwtmlCl1Qwiu6jQfBXgjAVkdMicd8pIr8QkU0i8rSIfENEZsfOt0ZEhkTkdBH5b2Az8LZg32dE5M5g4prfi8itwZAL4bGnAdcGmw9FbJgT7B/jkhI30dfPReR5EXlGRG6KDFcRxvmpiNwmIm8Orr9JRO4TkXc0/QANI4IJhtEt/BZ4Z7B+Kc79czDwAwARORM3eOIDuDGXPgi8BviPcBykCEfgJjD6DDAXN3QEuKGh/wE4DjgNN8jbf4rIfsH+HwCfC9b/JmJD4vg9IjI3OOZPwHuAhYFNt4lIfBjqvXCDEF4e3OdvgW+IyCvqPhXDyIG5pIyuQFVfEJFfBZuPRN0/wbDsnweuVdXTI+G/xE0q837cHBQhU4HXqxugLnqNMyLH9gA/xI2ddAZwjqpuEJGHgyh3qerqDLM/BzwCHK3BXBci8nPcGGjn4UQrZGfgMFV9KIh3J0403g1cknEdw/DCShiG4XL5LwOGRWR8uOAml/lv3JS5UX4RFwuAwCX0ExHZCGzBDR75SuBV8bhZBKO6HoCbUjWcGAlVfRT4GfCm2CEPhWIRxHsSV8KZjWEUhJUwDAN2CX5/lLL/D7HtMS6koKnuCtyUqO8P4mzFtXrargGbpuJGE01yV4VzNUd5KiHeCw1e2zASMcEwjNqEQqfhXEhx/hjbThri+V24UsU7VfXFMFBEpgJPN2DTH4LrvDxh38tJFgjDKBUTDKObeCH43T4W/l84UXiFql7X4Ll7cSWK/xETETkS5xJ6NBIvzYZRqOpzIrIS+BsR+bSqbg3O2Q+8EbiyQTsNo2FMMIxu4ne40sR8EbkHN0/zo6q6UUQ+DlwlItOBfwOewbV6ehPwU1W9IePcPwQ+CvyLiFyLq7v4FGOnvHwg+P2QiFyHq+e4J6Ufx6dwraS+LyJfAnbAtcx6BviC/20bRjFYpbfRNajqS7gWS1Nx9RV3AG8P9l0DzMNVUF+Pq4/4NC5TdZfHuW8GPoKbc/v7wOnAKbiZ7qLx7g7O+3bgtsCG3VPO+UNcH48pwI3A1bgpZA9V1d943bRhFIjNuGcYhmF4YSUMwzAMwwsTDMMwDMMLEwzDMAzDCxMMwzAMwwsTDMMwDMMLEwzDMAzDCxMMwzAMwwsTDMMwDMOL/w938OcZKJsU8gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"model.train(train, val, test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that the model will automatically generate and plot the training process, along with the validation result and test result.\n",
"\n",
"(**Model Prediction and Repuposing/Screening**) Next, we see how we can predict affinity scores on new data. Suppose the new data is a new drug below."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Drug Property Prediction Mode...\n",
"in total: 1 drugs\n",
"encoding drug...\n",
"unique drugs: 1\n",
"do not do train/test split on the data for already splitted data\n",
"predicting...\n",
"The predicted score is [0.003792080795392394]\n"
]
}
],
"source": [
"X_drug = ['CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CC=CC=C4)N']\n",
"X_pred = utils.data_process(X_drug = X_drug, y = y, drug_encoding = drug_encoding, split_method='no_split')\n",
"y_pred = model.predict(X_pred)\n",
"print('The predicted score is ' + str(y_pred))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also do repurposing/screening using the trained model. Basically, for repurposing/screening a set of new drugs (**r**), we run the above prediction function. We wrap the operation into a ```models.repurpose```.\n",
"\n",
"For example, suppose we want to do repurposing from a set of antiviral drugs for the COVID-19 target 3CL protease. The corresponding data can be retrieved using ```dataset``` functions.\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Repurposing Drug 1 Name: Abacavir\n",
"Repurposing Drug 1 SMILES: C1CC1NC2=C3C(=NC(=N2)N)N(C=N3)C4CC(C=C4)CO\n",
"Repurposing Drug 1 Pubchem CID: 441300\n"
]
}
],
"source": [
"r, r_name, r_pubchem_cid = dataset.load_antiviral_drugs()\n",
"print('Repurposing Drug 1 Name: ' + r_name[0])\n",
"print('Repurposing Drug 1 SMILES: ' + r[0])\n",
"print('Repurposing Drug 1 Pubchem CID: ' + str(r_pubchem_cid[0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can call the ```repurpose``` function. After feeding the necessary inputs, it will print a list of repurposed drugs ranked on its affinity to the target protein. The ```convert_y``` parameter should be set to be ```False``` when the ranking is ascending (i.e. lower value -> higher affinity) due to the log transformation, vice versus."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"repurposing...\n",
"Drug Property Prediction Mode...\n",
"in total: 82 drugs\n",
"encoding drug...\n",
"unique drugs: 81\n",
"Done.\n",
"predicting...\n",
"---------------\n",
"Drug Repurposing Result\n",
"+------+----------------------+-------------+-------------+\n",
"| Rank | Drug Name | Interaction | Probability |\n",
"+------+----------------------+-------------+-------------+\n",
"| 1 | Zidovudine | YES | 0.82 |\n",
"| 2 | Stavudine | NO | 0.49 |\n",
"| 3 | Zalcitabine | NO | 0.39 |\n",
"| 4 | Didanosine | NO | 0.20 |\n",
"| 5 | Nevirapine | NO | 0.19 |\n",
"| 6 | Fosamprenavir | NO | 0.17 |\n",
"| 7 | Amprenavir | NO | 0.10 |\n",
"| 8 | Pyrimidine | NO | 0.07 |\n",
"| 9 | Emtricitabine | NO | 0.06 |\n",
"| 10 | Tromantadine | NO | 0.03 |\n",
"checkout ./result/repurposing.txt for the whole list\n"
]
}
],
"source": [
"y_pred = CompoundPred.repurpose(X_repurpose = r, model = model, drug_names = r_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Saving and loading models are also really easy. The loading function also automatically detects if the model is trained on multiple GPUs. To save a model:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"model.save_model('./tutorial_model')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To load a saved/pretrained model:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<DeepPurpose.CompoundPred.Property_Prediction at 0x7fe9bec77090>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = CompoundPred.model_pretrained(path_dir = './tutorial_model')\n",
"model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also provided more functionalities for DTI research purposes. \n",
"\n",
"For example, this [demo](https://github.com/kexinhuang12345/DeepPurpose/blob/master/DEMO/Drug_Property_Pred-Ax-Hyperparam-Tune.ipynb) shows how to use Ax platform to do some latest hyperparameter tuning methods such as Bayesian Optimization on DeepPurpose.\n",
"\n",
"They are described in details in tutorial 1 and in the github repository."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"That wraps up our tutorials on the main functionalities of DeepPurpose's Drug Property Prediction framework! \n",
"\n",
"Do checkout the previous & upcoming tutorials:\n",
"\n",
"Tutorial 1: Training a Drug-Target Interaction Model from Scratch\n",
"\n",
"Tutorial 3: Repurposing and Virtual Screening Using One Line of Code\n",
"\n",
"**Star & watch & contribute to DeepPurpose's [github repository](https://github.com/kexinhuang12345/DeepPurpose)!**\n",
"\n",
"Feedbacks would also be appreciated and you can send me an email ([email protected])!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|