File size: 82,269 Bytes
09262a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# DeepPurpose Deep Dive\n",
    "## Tutorial 2: Training a Drug Property Prediction Model from Scratch for Assay Data\n",
    "#### [@KexinHuang5](https://twitter.com/KexinHuang5)\n",
    "\n",
    "In this tutorial, we further extends the use cases of DeepPurpose to assay data where there are only drug information and its affinity score to the protein in the assay. \n",
    "\n",
    "Agenda:\n",
    "\n",
    "- Part I: Introduction to Assay Data\n",
    "- Part II: Drug Property Prediction\n",
    "\n",
    "Let's start!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from DeepPurpose import utils, dataset, CompoundPred\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Part I: Introduction to Assay Data\n",
    "\n",
    "Drug-target interaction measures the binding of drug molecules to the protein targets. In drug discovery process, we usually already have a protein of interest and traditionally, high-throughput screening assay is performed on a potential drug library to get affinity scores. But it is expensive and time-consuming, and it cannot go through a huge amount of molecule candidates, which means it potentially can miss a drug candidate. Machine learning can provide an important role to facilitate this process. One way to do it is to narrow down the search space for HTS. Here are the steps:\n",
    "\n",
    "1. For a target protein of interest, conduct an initial high-throughput screening assay on a set of drugs (ideally, structurally diverse), where the set size depends on the time and cost constraint.\n",
    "\n",
    "2. Train a deep learning model using DeepPurpose and select a threshold to control the false positive rate (e.g., < 0.02).\n",
    "\n",
    "3. Apply the trained model on a large set of drugs. Select the set of drugs that meet the threshold and send to HTS.\n",
    "\n",
    "Through the above three steps, it greatly cuts down the time of screening and also reduces the likelihood of missing a potential drug candidate. Now, we show the step 2: using DeepPurpose to train a deep learning model for screening the assay. \n",
    "\n",
    "(**Data**) DeepPurpose takes into an array of drug's SMILES strings (**d**) and an array of label (**y**), which can either be binary 0/1 indicating interaction outcome or a real number indicating affinity value. Note **y**\\[0\\] is the score for **d**\\[0\\].\n",
    "\n",
    "Besides transforming into numpy arrays through some data wrangling on your own, DeepPurpose also provides two ways to help data preparation. \n",
    "\n",
    "The first way is to read from local files. For example, to load drug assay data, we expect a file.txt where each line is a drug SMILES string, followed by an affinity score or 0/1 label:\n",
    "\n",
    "```CC1=C...C4)N  7.365```\n",
    "\n",
    "Then, we use ```dataset.read_file_training_dataset_bioassay``` to load it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drug 1: CCOC1=CC=C(C=C1)N2C=CC(=O)C(=N2)C(=O)NC3=CC=C(C=C3)S(=O)(=O)NC4=NC=CC=N4\n",
      "Score 1: 0.0\n"
     ]
    }
   ],
   "source": [
    "X_drugs, X_targets, y = dataset.read_file_training_dataset_bioassay('./toy_data/AID1706.txt')\n",
    "print('Drug 1: ' + X_drugs[0])\n",
    "print('Score 1: ' + str(y[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "DeepPurpose also provides data loaders to ease preprocessing. For example, in this tutorial, we will use the HIV screening data. We can use ```dataset.load_HIV```. It will download, preprocess to the designated data format. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Dataset already downloaded in the local system...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drug 1: CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)=[O+]2\n",
      "Score 1: 0\n"
     ]
    }
   ],
   "source": [
    "X_drugs, y, drugs_index = dataset.load_HIV(path = './data')\n",
    "print('Drug 1: ' + X_drugs[0])\n",
    "print('Score 1: ' + str(y[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For more detailed examples and tutorials of data loading, checkout this [tutorial](./DEMO/load_data_tutorial.ipynb).\n",
    "\n",
    "## Part II: Drug Property Prediction Framework\n",
    "\n",
    "DeepPurpose provides a simple framework to do drug property prediction research using 8 encoders for drugs. It basically consists of the following steps, where each step corresponds to one line of code:\n",
    "\n",
    "- Encoder specification\n",
    "- Data encoding and split\n",
    "- Model configuration generation\n",
    "- Model initialization\n",
    "- Model Training\n",
    "- Model Prediction and Repuposing/Screening\n",
    "- Model Saving and Loading\n",
    "\n",
    "Let's start with data encoding! \n",
    "\n",
    "(**Encoder specification**) After we obtain the required data format from Part I, we need to prepare them for the encoders. Hence, we first specify the encoder to use for drug and protein. Here we try MPNN for drug.\n",
    "\n",
    "If you find MPNN is too large for the CPUs, you can try smaller encoders by uncommenting the last line:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "#drug_encoding = 'MPNN'\n",
    "drug_encoding = 'Morgan'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that you can switch encoder just by changing the encoding name above. The full list of encoders are listed [here](https://github.com/kexinhuang12345/DeepPurpose#encodings). \n",
    "\n",
    "(**Data encoding and split**) Now, we encode the data into the specified format, using ```utils.data_process``` function. It specifies train/validation/test split fractions, and random seed to ensure same data splits for reproducibility. This function also support data splitting methods such as ```cold_drug```, which splits on drug for model robustness evaluation to test on unseen drug/proteins.\n",
    "\n",
    "The function outputs train, val, test pandas dataframes."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drug Property Prediction Mode...\n",
      "in total: 41127 drugs\n",
      "encoding drug...\n",
      "unique drugs: 41127\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "RDKit WARNING: [09:01:53] WARNING: not removing hydrogen atom without neighbors\n",
      "RDKit WARNING: [09:01:53] WARNING: not removing hydrogen atom without neighbors\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Done.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>SMILES</th>\n",
       "      <th>Label</th>\n",
       "      <th>drug_encoding</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)...</td>\n",
       "      <td>0</td>\n",
       "      <td>[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                              SMILES  Label  \\\n",
       "0  CCC1=[O+][Cu-3]2([O+]=C(CC)C1)[O+]=C(CC)CC(CC)...      0   \n",
       "\n",
       "                                       drug_encoding  \n",
       "0  [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...  "
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "train, val, test = utils.data_process(X_drug = X_drugs, y = y, drug_encoding = drug_encoding,\n",
    "                                split_method='random',frac=[0.7,0.1,0.2],\n",
    "                                random_seed = 1)\n",
    "train.head(1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 1])"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import numpy as np\n",
    "np.unique(y)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "(**Model configuration generation**) Now, we initialize a model with its configuration. You can modify almost any hyper-parameters (e.g., learning rate, epoch, batch size), model parameters (e.g. hidden dimensions, filter size) and etc in this function. The supported configurations are listed here in this [link](https://github.com/kexinhuang12345/DeepPurpose/blob/e169e2f550694145077bb2af95a4031abe400a77/DeepPurpose/utils.py#L486).\n",
    "\n",
    "For the sake of example, we specify the epoch size to be 3, and set the model parameters to be small so that you can run on both CPUs & GPUs quickly and can proceed to the next steps. For a reference parameters, checkout the notebooks in the DEMO folder."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "config = utils.generate_config(drug_encoding = drug_encoding, \n",
    "                         cls_hidden_dims = [1024,1024,512], \n",
    "                         train_epoch = 3, \n",
    "                         LR = 0.001, \n",
    "                         batch_size = 128,\n",
    "                         hidden_dim_drug = 128,\n",
    "                         mpnn_hidden_size = 128,\n",
    "                         mpnn_depth = 3\n",
    "                        )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "(**Model initialization**) Next, we initialize a model using the above configuration."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<DeepPurpose.CompoundPred.Property_Prediction at 0x7fe9bbcf5090>"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = CompoundPred.model_initialize(**config)\n",
    "model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "(**Model Training**) Next, it is ready to train, using the ```model.train``` function! If you do not have test set, you can just use ```model.train(train, val)```. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Let's use CPU/s!\n",
      "--- Data Preparation ---\n",
      "--- Go for Training ---\n",
      "Training at Epoch 1 iteration 0 with loss 0.69454. Total time 0.0 hours\n",
      "Training at Epoch 1 iteration 100 with loss 0.11414. Total time 0.00138 hours\n",
      "Training at Epoch 1 iteration 200 with loss 0.17790. Total time 0.0025 hours\n",
      "Validation at Epoch 1 , AUROC: 0.78535 , AUPRC: 0.38694 , F1: 0.37810\n",
      "Training at Epoch 2 iteration 0 with loss 0.11183. Total time 0.00333 hours\n",
      "Training at Epoch 2 iteration 100 with loss 0.10962. Total time 0.00472 hours\n",
      "Training at Epoch 2 iteration 200 with loss 0.11443. Total time 0.00611 hours\n",
      "Validation at Epoch 2 , AUROC: 0.82523 , AUPRC: 0.47837 , F1: 0.46601\n",
      "Training at Epoch 3 iteration 0 with loss 0.08445. Total time 0.00666 hours\n",
      "Training at Epoch 3 iteration 100 with loss 0.14978. Total time 0.00805 hours\n",
      "Training at Epoch 3 iteration 200 with loss 0.11269. Total time 0.00944 hours\n",
      "Validation at Epoch 3 , AUROC: 0.84940 , AUPRC: 0.52009 , F1: 0.45989\n",
      "--- Go for Testing ---\n",
      "Testing AUROC: 0.7718187151198811 , AUPRC: 0.4290818621138395 , F1: 0.4144578313253012\n",
      "--- Training Finished ---\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEaCAYAAAAG87ApAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABC2klEQVR4nO3dd3gU5fbA8e9JJXRIBBGkiEgRKYqAFymiIu0idrCXqyIXwYaiWBC7IgrSuYoFBZX7U7lUQQEr0kFFpIkQpEgLNSHl/P6YCSwhZRKyLTmf59kn2ZnZmTOzu3P2fd+Z9xVVxRhjjPEqItgBGGOMCS+WOIwxxuSLJQ5jjDH5YonDGGNMvljiMMYYky+WOIwxxuSLJY5iRkR+FZF2wY4jVIjIEyLynyBt+10ReT4Y2y5sInKTiHxZwNfaZzLMWOIIIhHZJCJHROSgiGx3TySl/blNVT1XVef7cxuZRCRWRF4Skc3ufq4Tkf4iIoHYfjbxtBORRN9pqvqiqv7LT9sTEekrIr+IyCERSRSRT0XkPH9sr6BEZJCITDyVdajqh6rawcO2TkqWBf1MikiMG/s69/huEpF3RKRmftdl8scSR/D9U1VLA02ApsDjwQ0n/0QkKodZnwKXAp2BMsAtwD3AMD/EICISap/nYUA/oC9QETgH+BzoUtgbyuU98LsgbnsK0A24ESgHNAaW4nzm8iWYxy8sqao9gvQANgGX+Tx/FZju87wl8AOwD1gJtPOZVxGYAPwF7AU+95nXFVjhvu4HoFHWbQJnAEeAij7zmgK7gGj3+Z3Ab+76ZwM1fJZV4N/AOuCPbPbtUiAZODPL9BZAOnC2+3w+8BKwCNgPfJElptyOwXzgBeB7d1/OBu5wYz4AbATudZct5S6TARx0H2cAg4CJ7jI13f26DdjsHouBPtuLA95zj8dvwKNAYg7vbR13P5vn8v6/C4wEprvx/gTU9pk/DNjiHpelQGufeYNwTpwT3fn/ApoDP7rHahswAojxec25wBxgD7ADeALoCBwFUt1jstJdthzwtruercDzQKQ773b3mL8B7Hbn3Q58584Xd95ON7afgYY4PxpS3e0dBP6X9XsARLpxbXCPyVKyfIbc5S5z38+T5uXy/cruvb7Lfa+/AWYCfbKsYyVwtft/PZ/j9ztwfbDPIcF6BD2A4vzI8oWp5n7BhrnPq7pfys44JcPL3eenufOnAx8DFYBooK07van7hW3hfglvc7cTm802vwbu9onnNWCM+/+VwHqgPhAFPAn84LOsul+iikBcNvv2MrAgh/3+k+Mn9Pnuiakhzsn9vz5f7ryOwXz3S3+uG2M0zq/52jgnr7bAYeB8d/l2ZDnR53AyGY+TJBoDKUB9331yj3k1YFXW9fmstxfwZx7v/7vu/jR34/8QmOwz/2Yg3p33MLAdKOETdyrQ3T02ccAFOIk2yt2X34AH3OXL4CSBh4ES7vMWWY+Bz7Y/A8a670klnMSe+Z7dDqQB97vbiuPExHEFzgm/vPs+1Aeq+Ozz87l8D/rjfA/quq9tDMTn5/OV3Xpzea/fd/cxDrgV+N5n+QY4STjWXWYLzg+TKI7/yGoQ7PNIMB6hVrQvjj4XkQM4H8qdwDPu9JuBGao6Q1UzVHUOsAToLCJVgE5AL1Xdq6qpqrrAfd09wFhV/UlV01X1PZyTX8tstv0R0BOcqh6ghzsNnBPfS6r6m6qmAS8CTUSkhs/rX1LVPap6JJt1J+CcqLKzzZ2f6QNV/UVVDwFPAdeLSGRux8Dnte+q6q+qmuYeh+mqukEdC4AvgdY5xJGTZ1X1iKquxPnF2didfj3wonvME4HhuawjPpf99/WZqi5yj/GHOFWWAKjqRFXd7e7b6zgnsLo+r/1RVT93j80RVV2qqgvd5TfhnPjbust2Bbar6uuqmqyqB1T1p+wCEpHKOMf4AVU9pKo7cUoQPXwW+0tV33K3lfX9T8VJTPUAcT9DXo4FOCWnJ1X1d/c9XKmqu7NZzuvxzcsgdx+P4CRL38/4TcD/qWoKzvHbpKoT3H1ejvMj57pCiCHsWOIIvu6qWgbn13A9jp9QawDXici+zAdwMVAFOBPYo6p7s1lfDeDhLK87E6daJqv/Ahe5iagNTjXOtz7rGeazjj04vwCr+rx+Sy77tcuNNTtV3PnZredPnJJDArkfg2xjEJFOIrJQRPa4y3fmxCTlxXaf/w8DmRcsnJFle7nt/25y3n8v20JEHhGR30Qkyd2Xcpy4L1n3/RwRmeZeaLEfJ9lnLn8mTvWPFzVw3oNtPsd9LE7JI9tt+1LVr3GqyUYCO0VknIiU9bhtr3F6Pb55ObYfqnoApySfmSB74iRzcI5JiyyfxZuA0wshhrBjiSNEuL+O3wWGuJO24PwSL+/zKKWqL7vzKopI+WxWtQV4IcvrSqrqpGy2uRfnF/kNOA2Mk1VVfdZzb5b1xKnqD76ryGWX5uJ80c70nSgiLXBODl/7TPZdpjrOL9ZdeRyDk2IQkVicZDgEqKyq5YEZOAkvr3i92IZTRZVd3Fl9BVQTkWYF2ZCItMZpQ7keqODuSxLH9wVO3p/RwBqgjqqWxWkryFx+C3BWDpvLup4tOKXUBJ/jXlZVz83lNSeuUHW4ql6AU91zDk4VVJ6vc7ddO49lwPl8NReRarkscwgo6fM8u5N81ngmAT1F5CKcKr15PnEtyPJZLK2q93mItcixxBFa3gQuF5HGOI2e/xSRK0QkUkRKuJeTVnOL/TOBUSJSQUSiRaSNu47xQC8RaeFeaVRKRLqISJkctvkRTt3utRyvpgIYAzwuIucCiEg5EfFcLFfVuTgnz/+KyLnuPrR092u0qq7zWfxmEWkgIiWBwcAUVU3P7RjksNkYnOqcv4E0EekE+F4iugOIF5FyXvcji09wjkkFEakK9MlpQXf/RgGT3Jhj3Ph7iMgAD9sqg9OO8DcQJSJPA3n9ai+D0xh9UETqAb4ntWlAFRF5QJzLpMu4SRyc41Iz86o09/P1JfC6iJQVkQgRqS0ibfFARC50P3/ROCfvZJzSbOa2ckpgAP8BnhOROu7nt5GIxGddyP18zQE+E5ELRCTK3adeInKnu9gKoIf7/WiG8xnPywyc0sVg4GNVzYx7GnCOiNziri/a3c/6HtZZ5FjiCCGq+jdOY93TqroFp4H6CZyTxxacX22Z79ktOL/M1+C0jTzgrmMJcDdOVcFenAbu23PZ7FScK4C2u3X6mbF8BrwCTHarPX7BaVfJj2twfrHNwrmKZiLOlTr3Z1nuA5zS1nacX3l93RjyOgYncKsa+uKc4PfilKKm+sxfg/OLcqNb3ZBd9V1uBgOJwB84v3in4Pwyz0lfjlfZ7MOpgrkK+J+Hbc3GOW5rcarvksm9agzgEZx9PoDzA+LjzBnusbkc+CfOcV4HXOLO/tT9u1tElrn/34qTiFfjHMspeK8aKutuf68b+26cCy/Aef8buMf/82xeOxTn/fsSJwm+jdNwnZ1rcU70H+OUxn4BmuG8N+C0l9V243iWE38YZcttz/g/nKu2PvKZfgDnR0gPnCsZt+N8P2LzWmdRJMdrJowJPBGZj3OlS1Du3j4VInIf0ENVPf0SN6aosBKHMR6JSBURaeVW3dTFubT1s2DHZUyg2d2SxngXg3N1US2cqqfJOO0YxhQrVlVljDEmX6yqyhhjTL6EfVVVQkKC1qxZM9hhGGNMWFm6dOkuVT2tIK8N+8RRs2ZNlixZEuwwjDEmrIjInwV9rVVVGWOMyRdLHMYYY/LFEocxxph8scRhjDEmXyxxGGOMyRdLHMYYY/IlYIlDRN4RkZ0i8ksO80VEhovIehFZJSLnByo2Y4wx3gWyxPEu0DGX+Z1wuveugzP86egAxGSMMcXO0aPpp/T6gN0AqKrfiEjNXBa5EnjfHYFuoYiUF5Eq+Rir2BhjTDbumLCIeb//DcDeeVs4uuPwKa0vlO4cr8qJA9UkutNOShwicg9OqYTq1asHJDhjjAknvsnCV3RCHPuX7jyldYdS4vBMVccB4wCaNWtm3fsaY4wra8I4uusIR3cc5p9X12PCHc1RVf78M4latZ4p8DZCKXFsBc70eV7NnWaMMSYPWRNGRmo65X9P4rfZm4iMFAa+0RUAEaFmzfKntK1QShxTgT4iMhloASRZ+4YxxuRc7ZSTOimw4Ys/+PmPfQDcddcFxMfnNHR7/gUscYjIJKAdkCAiicAzQDSAqo7BGXS+M7AeOAzcEajYjDEmlHlNGs0rlUF/3MGUKasBaNSoMmPGdOGii87M45X5E8irqnrmMV+BfwcoHGOMCRleSxSbXu6S6/zu3SfzxRe/U7JkNIMHt6Nfv5ZERRX+XRehVFVljDHFkpekcUnd7MdcSkvLOJYcXnnlMqKjI3n99Q5Ur16uUGP0ZYnDGGMCJK+SRV4lCl9JSck8+eTXrF27h1mzbkJEqFs3gU8/va4wQs2VJQ5jjPGT/DRq51SiyEpV+fTT1TzwwCy2bTtIZKSwYsV2mjatciqh5oslDmOM8ZPsksYldU9jwh3NC7S+DRv20KfPTGbNWg/ARRdVY8yYrjRqVPmU4swvSxzGGFNIciph5KcKKidDhvzAU0/NIzk5jfLlS/DKK5fxr3+dT0SEnPK688sShzHGeJTf+ynAexVUXg4fTiU5OY1bbmnEkCEdqFSpVKGstyAscRhjjAdek8apVEX5+vvvQ/z++24uvtjpj++xx1rRrl1N2rSpccrrPlWWOIwxJg++SaOwEkNOMjKUd95ZzqOPziEqKoI1a/pQsWIcsbFRIZE0wBKHMcZkK7sShr+Txi+/7KRXr2l8/73TUfjll5/F4cOpVKxYeN2FFAZLHMYY4yOnKil/Jo1Dh44yePAChg5dSFpaBpUrl+LNNztyww3nIhL4xu+8WOIwxhR7wUgWvq699lNmzVqPCPTu3YwXXriU8uVL+H27BWWJwxhTLOT3ZrxAJIxMjz3Wih07DjJ6dBdatKgWsO0WlCUOY0yRUZDLZTMFKlmkpWXw1ls/sWnTPoYN6wRAu3Y1WbLknqDck1EQljiMMUWCl6QR6JJEVosWbeXee6exYsV2AO655wLOPbcSQNgkDbDEYYwpIgJ1uWxB7NuXzBNPfMWYMUtQhRo1yjFiROdjSSPcWOIwxoS0/FY/hVrSmDz5Fx54YBY7dhwiKiqChx++iKeeakOpUjHBDq3ALHEYY4LiVNojclJY3XsUpi+/3MCOHYdo1epMRo/uwnnnBbZDQn+wxGGMCbj8Jo1QrH7KSUpKGlu3HuCssyoA8Oqrl9O6dXVuu61JWLVj5MYShzEm4EK5PeJUfP31H9x333QiIoSVK3sRExNJQkJJ7rijabBDK1SWOIwxAZFdKaOoJI0dOw7yyCNzmDhxFQD16iWQmLj/WKmjqLHEYYzxm9yqpEKxPSK/MjKU8eOXMmDAV+zbl0yJElE8+WRr+vdvRUxMZLDD8xtLHMaYAivKbRVeXHXVx0yd+jsAV1xRm5EjO1O7dsUgR+V/ljiMMXkKhzuyg+Hqq+uxaNFWhg3ryHXXNQjJDgn9wRKHMSZXeSWNopwYspo69XcSE/fTu/eFANx6a2Ouvro+ZcrEBjmywLLEYUwxVdyrmfJj8+Yk+vadyRdf/E5sbCQdO57NWWdVQESKXdIASxzGFDsFHTe7OCaN1NR0hg//iWeemc+hQ6mUKRPD88+3p0aNcsEOLagscRhTxOV1ZVNxTAheLFyYyL33TmPVqh0AXHddA9544wqqVi0b5MiCzxKHMUVEKI83EY6eemoeq1btoFat8owY0ZnOnesEO6SQYYnDmDBS0KubLFHkTVU5cOAoZcs6bRYjRnTi/fdXMnBgG0qWjA5ydKHFEocxYcBrwrAEUTC//76L3r1nIAJz5tyCiFC3bgIvvHBpsEMLSZY4jAkRlhwCLzk5jZde+paXX/6eo0fTiY+PY9OmfdSqVTS7CiksljiMCQHhMHpdUTNnzgZ6957B+vV7ALjzzia8+urlxMeXDHJkoc9z4hCR84B7gdrAnaq6TUS6A3+q6nKP6+gIDAMigf+o6stZ5lcH3gPKu8sMUNUZXmM0Jhz5Jg1LDv6nqtx111QmTFgBQIMGpzFmTBdat64R3MDCiKfEISIdgKnATKA9EOfOqg3cDnT3sI5IYCRwOZAILBaRqaq62mexJ4FPVHW0iDQAZgA1vcRoTCizEkXoEBFq1ixPXFwUTz/dloceuqhId0joD15LHM8BD6nqKBE54DN9PvCwx3U0B9ar6kYAEZkMXAn4Jg4FMi+SLgf85XHdxoQEu+opNK1YsZ1t2w7QqZNzSe1jj7XillsaWVtGAXlNHA1xfv1ntQfw2hVkVWCLz/NEoEWWZQYBX4rI/UAp4LLsViQi9wD3AFSvXt3j5o3xL+vTKfQcOJDCM8/MZ9iwn4iPj2PNmj5UrBhHbGyUJY1T4DVx7ME58W/KMv18nARQWHoC76rq6yJyEfCBiDRU1QzfhVR1HDAOoFmzZlqI2zemQKydIrSoKp9/voa+fWeRmLifiAjhxhvPIzo6ItihFQleE8dHwGsicj1OdVKUiLQFhgATPK5jK3Cmz/Nq7jRfdwEdAVT1RxEpASQAOz1uw5hCZR0Bhp8//9xHnz4zmTZtLQDNmp3B2LFdOf/8KkGOrOjwmn6fBP4A/gRK47RLfA18B7zgcR2LgToiUktEYoAeOA3uvjYDlwKISH2gBFCwQQCMOUWWNMKPqnLNNZ8wbdpaypaNZcSITixceJcljULmqcShqqnATSLyFE71VASwXFXXed2QqqaJSB9gNs6ltu+o6q8iMhhYoqpTcRrax4vIgzglm9tV1aqiTEDklCgsIYS+jAwlIkIQEYYM6cCYMUt4440rqFKlTLBDK5LEy3lZRJ4Ghqjq4SzT44D+qjrYT/HlqVmzZrpkyZJgbd4UEZY0wtPu3YcZMGAuAOPHdwtyNOFFRJaqarMCvdZj4kgHqqjqzizT44Gdqhq0i6AtcZhTkTVhWKIID6rK+++v5JFH5rBr12FiYiLZsKEv1apZl+denUri8No4LjhVR1k1xbniypiwkl0Jw5JGePjtt7+5777pLFjwJwDt2tVk9OguljQCKNfE4d7sp+5jo4j4Jo9InMbrMf4Lz5jCY9VR4U1VefrpebzyyvekpmaQkFCS11/vwC23NEJEgh1esZJXiaMPTmnjHWAgkOQz7yiwSVV/9FNsxhQqK2GENxFh69YDpKZmcPfd5/Pyy5dRsWJc3i80hc5rG0db4Af36qqQYm0cJqu8LqPd9HKXAEZjTsVffx1g167DNGpUGYBduw7z+++7aNXKeow4VX5v41DVBT4bOx2IyTJ/c0E2bkxh89Lthwl96ekZjB69hIEDv6Zq1TKsWNGLmJhIEhJKkpBgSSPYvPaOWxZ4C7ieLEnDZV1LmoDLLUlYNVT4WrZsG/feO40lS5w+Ttu0qcH+/SkkJNg4GaHC61VVrwONcbpP/z/gTpy+q/rhvXdcY06ZdU9edO3fn8JTT33NiBGLychQqlUry/DhHenevZ41focYr4mjE9BTVb917+lYqqofi8g2nMGdpvgtQlPsWcmi6FNV2rSZwMqVO4iMFB56qCWDBrWjTJnYYIdmsuE1cZTH6acKnCur4oH1wI/Afwo/LGMcdr9F8SAiPPhgS0aNWsLYsV1p0uT0YIdkcuE1cWwAzsLphPA3oIeILAKuxm4ANH5gd3QXbUePpjN06I9ERgr9+7cC4NZbG3PzzY2IjLSuz0Od18TxLtAIZ8S/l4FpOPd4ROC0cxhTqCxpFF3ffvsnvXpNZ/Xqv4mNjeTWWxtTuXJpRITISGvLCAdeL8d9w+f/r0WkHtAMWKeqP/srOFO8ZFctZfdcFB27dh3m0UfnMGHCCgDq1KnIqFFdqFy5dHADM/nmtcRxAve+jc0AItJDVScXalSm2Mir4duEP1Xl3XdX0L//HHbvPkJMTCSPP34xAwZcTIkSBToFmSDL810TkSigLpCqqmt9pncHBrvzLHEYz+wqqeJn4sSf2b37CO3b12LUqM7UrZsQ7JDMKcirk8MGOO0ZNdznXwC9cBLF+ThXVFldgvHMrpIqHg4fTiUpKZkqVcogIowa1ZnFi//ippvOs3syioC8Shwv4wwZ2xe4CbgBaIAzBvmVqnrAv+GZcGc90hY/M2eu49//nsFZZ1VgzpxbEBHq1k2wUkYRklfiaA50VtVlIvIdTuIYoqp274bJkyWN4mXr1v088MBspkxZDUCZMrHs3n3EugopgvJKHJWArQCquk9EDgPf+D0qE3as3aL4Sk/PYOTIxTz55NccOHCUUqWiGTz4Evr2bUFUlN2TURTllTgUyPB5ngGEXNfqxv+89BGVHUsaRVtGhtK27bt8//0WALp3r8ewYR2pXr1ckCMz/pRX4hBOHPmvNLAqy0iAqKqN2VgE5TdZWJIofiIihA4darN5cxIjRnSmW7e6wQ7JBECuAzmJyG1eVqKq7xVaRPlkAzkVLqtyMrlRVT755FeioiK45poGAKSkpJGamkHp0tmNuGBCld8GcgpmQjCBZ5fKmtxs2LCH3r1n8OWXGzjttJK0b1+LChXiiI2NItY6sS1W7LbNYsyuejJepKSk8dprP/DCC9+SnJxGhQoleOGF9pQrVyLYoZkgscRRjFnSMHmZP38T9903nTVrdgFwyy2NGDKkA5UqlQpyZCaYLHEY60jQZCs9PYPevZ2kUbduPKNHd+GSS2oFOywTAixxFEMFvbTWFH0ZGUpycholS0YTGRnB6NFd+OabP3n00VbExtrpwjjsk1CM5NT4bQzAzz/voFev6dSrF8/bb18JQNu2NWnbtmZwAzMhx3PiEJHewL+BWkBDVd0oIgOAjar6ib8CNN7lpyRhbRkm06FDRxk8eAFDhy4kLS2DP/7Yy969R6hQIS7YoZkQ5SlxiMgDwKPAKzgdH2baijMSoCWOIPOaNCxhGF//+9/v9Okzk82bkxCB3r2b8cILl1K+vF0xZXLmtcTRC7hbVaeLyPM+05cB5xZ+WCYvdimtORVpaRnccMMU/u//fgOgSZPTGTu2K82bVw1yZCYceE0cNYBfspmeClh51s+sNGEKW1RUBOXKxVK6dAzPPXcJffo0tw4JjWdeE8dGnIGb/swyvTOw2uvGRKQjMAyIBP6jqi9ns8z1wCCcDhZXquqNXtdf1OSVMCxRmPz46adEAFq0qAbAa69dzuDBl1CtmnU1Z/LHa+IYAowQkZI4HR9eJCK34LR73OllBSISCYwELgcSgcUiMlVVV/ssUwd4HGilqntFpJL3XQl/1k+U8Yd9+5J5/PG5jB27lHr1ElixohcxMZHEx9s4GaZgPCUOVZ3gjj3+IlAS+AD4C+irqh973FZzYL2qbgQQkcnAlZxYYrkbGKmqe93t7vS47rBmCcP4g6oyadIvPPTQbHbsOERUVATdutUlPT0Dp9BvTMF4vhxXVccD40UkAYgowEm9KrDF53ki0CLLMucAiMj3OJ/sQao6K5/bCVle2iosUZjCsG7dbnr3nsHcuRsBaNXqTMaM6UrDhsWqEG/8xOvluG8CH6jqUlXd5ed46gDtgGrANyJynqruyxLPPcA9ANWrV/djOIXH2itMoKSmptO+/fskJu6nYsU4Xn31Mu64oykRERLs0EwR4bXE0RzoKyK/AxOBD1V1Uz63tRU40+d5NXear0TgJ1VNBf4QkbU4iWSx70KqOg4YB854HPmMw2+sRGGCSVUREaKjI3nhhfbMm7eJV1+9jNNOsw4JTeHKdSCnExYUOQu40X3UBX7ESSIfZ7ZJ5PH6KGAtcClOwlgM3Kiqv/os0xHoqaq3uVViy4Emqro7p/UGeiCnU+nnyZKG8YcdOw7yyCNzOOecijz1VNtgh2PChN8GcvLlNmo/DzwvIufjJJAngTfwcC+HqqaJSB9gNk77xTuq+quIDAaWqOpUd14HEVkNpAP9c0sagWJdeZhQlJGhjB+/lAEDvmLfvmTKly/BAw+0pEwZG1XJ+FdBOzmMBmKBGJwTvCeqOgOYkWXa0z7/K/CQ+wgZNiqeCTUrV26nV6/pLFzo3JvRsePZjBzZ2ZKGCYj8dHJ4DnATTkmjBjAPeBj4P/+EFhrumLDo2P82boUJttTUdB5//CvefHMh6elKlSqlGTasI9de2wARa/w2geH1qqolQFNgBTAKmKSq2/0YV8jILG1Y9+MmFERFRbB8+XYyMpT772/Oc89dYkO4moDzWuKYDdyiqr/5M5hQkrVdw6qmTLBs3pxEenoGtWpVQEQYM6YLSUkpNGt2RrBDM8WUp17NVHVgcUoacGK7hpU2TDCkpqYzZMgP1K8/krvv/h+ZV0DWqRNvScMEVY4lDhEZDjyuqofc/3Okqn0LPbIgsnYNE2w//riFXr2ms2rVDgAqVozj8OFUSpWKCXJkxuReVXUeztVTmf8XG9auYYJl794jDBgwl3HjlgFQq1Z5Ro7sTKdOdYIcmTHH5Zg4VPWS7P4vyqxdwwRTSkoaTZqMZfPmJKKjI+jf/x8MHNiGkiWj836xMQHkqY1DRJ52u1TPOj1ORJ7O7jXhyNo1TDDFxkZx111NadOmBitW9OKFFy61pGFCkqcuR0QkHaiStUdcEYkHdqpq0PpoLqwuR3xLG9auYQIhOTmNl176lrp1E7jxRqc2OC0tg8hIsXsyjN8FossRwRmRL6umwJ6CbDjUWLuGCaQ5czbQu/cM1q/fQ6VKpbjqqnrExUXb8K0mLOSaOETkAE7CUGCjiPgmj0igBDDGf+H5V3Z9UFm7hvGn7dsP8tBDs5k06RcAzj33NMaM6UpcnFVJmfCRV4mjD05p4x1gIJDkM+8osElVf/RTbH6VXdKw0obxl/T0DMaOXcoTT3xFUlIKcXFRPPNMWx588CJiYmw0PhNeck0cqvoegIj8AfzgjpMR9nyThnVYaAIhPV15661FJCWl0LlzHUaM6EStWhWCHZYxBZLbDYAVVTWz/eJnoExODXY+y4UFSxomEA4cSCE9XSlfvgQxMZGMH/9Pduw4yNVX17fGbxPWcitx/C0imVdS7SL7xvHMRvOwKWv73hVuScP4g6ry2Wdr6Nt3JldcUZu3374SgIsvDo9hjo3JS26Joz3Hr5gK+xsAs7ZpWHuG8YdNm/Zx//0zmTZtLQC//PI3yclplChR0KFvjAk9ud05viC7/8NV1qRhpQ1TmFJT0xk69EeefXYBR46kUbZsLC++2J5evZoRGWmX2Jqixet4HA2AdFX93X1+OXAb8Cvwqqp6HgUw0LKWNOzmPlPYDh9OpWXL//Dzz879sT16NGTo0A5UqVImyJEZ4x9efwq9g3OzHyJyJvAFUBH4N8445CHLqqeMv5UsGU2zZmdQu3YFZs++mUmTrrGkYYo0rxWv9YBl7v/XAj+pamcRuQSYADzuj+AKk5U0TGFRVd5/fyW1a1c81uD9xhtXEBMTaTfymWLBa+KIxLnhD+BSYIb7/wagcmEHVVh8r6AypjD89tvf3HffdBYs+JP69RNYsaIXMTGRNnyrKVa8VlX9AtwnIq1xEscsd3pVnEt1Q5L1P2UKy5EjqTz55Nc0bjyGBQv+5LTTSvL44xcTHW0N36b48VrieAz4HHgEeE9Vf3andwNC/me9XUFlTsWsWev5979nsHHjXgDuvvt8Xn75MipWjAtyZMYEh6fEoarfiMhpQFlV3eszayxw2C+RnYLs+qEypiAOHjzKLbd8xq5dh2nYsBJjxnShVSu7kc8Ub57vSlLVdBE5IiINce4W36Cqm/wW2SmwK6nMqUhPzyAjQ4mOjqR06RiGDetIYuJ+HnywJdHRYdNJgjF+4/U+jijgJZzecmNwuhpJEZG3gIGh2vmhXUll8mvp0r+4995pXHllXZ56qi3AsUGWjDEOry17rwI3A72Ac4A6wH3ALTgJxZiwtn9/Cv36zaR58/+wdOk2PvhgFampIXtfqzFB5bWq6kbgTlWd4TNtg4j8DfwHp9E8JNgluCY/VJUpU1bTr98stm07SGSk8NBDLXn22UusWsqYHHhNHOVw7tnIagNQvtCiKQR2Ca7x6sCBFG64YQozZ64HoEWLqowZ05UmTU4PcmTGhDavVVUrgb7ZTO8HrCi0aE6RdZlu8qN06RhSUtIpVy6W0aO78MMPd1nSMMYDryWOR4EZInIZsNCd1hI4A+jkj8AKwkobJi/ffPMnVaqUpk6deESEd97pRokSUVSuXDrYoRkTNjyVOFT1G5xG8SlAaffxKVBXVb/zX3gFY6UNk9WuXYe5884vaNv2Xe67bzqqzrhkNWqUt6RhTD7lWeIQkRpAByAa+EhVf/V7VAVgjeImOxkZyrvvrqB//zns2XOEmJhIWreuTnq6EhVlw7caUxC5Jg4RaYPToWFJd1KaiNymqpMKsjER6QgMw+k08T+q+nIOy12DU7q5UFWXeFm3VVOZrH79dSf33Tedb7/dDMCll9Zi1KgunHNOfJAjMya85VVV9RzwNVANSMAZl+PVgmxIRCKBkThtIg2Anu4AUVmXK4PT6P5TQbZj1VQGICkpmZYt3+bbbzdTqVIpJk68ijlzbrGkYUwhyKuq6jygjar+BSAiDwN3i0iFLH1WedEcWK+qG911TQauBFZnWe454BWgfz7XbwyqiohQrlwJHnusFVu37ufFFy+lQgXrkNCYwpJXiaM8sDPziaoewunUsHwBtlUV2OLzPNGddoyInA+cqarTc1uRiNwjIktEZMnff1tnhga2bt3Ptdd+wsSJq45NGziwNaNHd7WkYUwh83I5biMR2ePzXICGIlIhc4KqLjv5ZfkjIhHAUOD2vJZV1XHAOIBmzZrpqW7bhK+0tAxGjlzEk0/O4+DBoyxbto0bbzyPyMgIRKzx2xh/8JI4ZuMkC19f+PyvOI3dedkKnOnzvJo7LVMZoCEw3/3Cnw5MFZFuXhvITfGyePFWevWazrJl2wDo3r0ew4d3JDLSBlcyxp/yShy1CnFbi4E6IlILJ2H0wOkDCwBVTcJpgAdAROYDj3hJGnYpbvFy6NBRHntsLqNGLUYVqlcvx1tvdaJbt7rBDs2YYiHXxKGqfxbWhlQ1TUT64JRgIoF3VPVXERkMLFHVqQVdt12KW7xERUUwd+5GIiKEhx66iGeeaUupUjHBDsuYYkMy76ANV82aNdNdlz0L2PgbRdmGDXsoX74E8fHOLUWLF2+lRIkozjuvcpAjMyY8ichSVW1WkNdaZbAJaSkpaTz//Dc0bDiaxx6be2z6hRdWtaRhTJB4HjrWmECbP38T9903nTVrdgHOFVTp6RnW+G1MkFniMCFn585D9O8/h/ffXwlA3brxjB7dhUsuKcxrNYwxBZWvxCEiCUBtYIWqpvgnJFOc7dp1mPr1R7JnzxFiYyMZOLA1jz7aithY+41jTKjw9G10+496G7gW576NOsBGERkDbFfVQX6L0BQrCQklufLKuiQm7mfUqC6cfXbFYIdkjMnCa2XxKzjdg5wPHPGZPg24qrCDMsWHc0/GHL755viV36NGdWH27JstaRgToryW/7sBV6nqChHxvX73N+Cswg/LFAf/+9/v9Okzk82bk5g+fR2rVt1HRIRQooRVSxkTyrx+QysAu7OZXgZIL7xwTHGwZUsS/frN4rPP1gDQtOnpjB3blYgI61vKmHDgtapqMU6pI1NmqeNe4IdCjcgUWWlpGQwd+iP164/ks8/WULp0DG++eQWLFt3NhRdWzXsFxpiQ4LXE8QQwW0TOdV/zkPt/c6CNv4IzRcv+/Sm89NJ3HDqUyjXX1OfNNztSrVrZYIdljMknT4lDVX8QkX8AjwAbgEuBZcBFqvqzH+PL06ZdhygdzABMrvbtSyYuLorY2CgqVoxj7NiuxMZG0qXLOcEOzRhTQJ5bId0EcZsfYymQAylplMY6OAw1qsqkSb/w4IOz6dPnQp56qi0AV19dP8iRGWNOldf7OHK9LlJV9+Q2PxBsrPHQsXbtbnr3ns5XX/0BwDffbD42pKsxJvx5LXHs4niDeHa8DORkirjk5DReeeU7XnzxO44eTadixThee+1ybr+9iSUNY4oQr4njkizPo4GmwH3Ak4UakQlL27cfpE2bCaxb5xQ+b7+9Ca+9djkJCSWDHJkxprB5bRxfkM3kuSKyEfgX8FGhRmXCTuXKpTjzzHJERUUwenQX2ratGeyQjDF+cqq36K7ALsctljIylPHjl3LJJbU455x4RISPPrqaChXiiImxmktjirICD2wgIqWBB4AthRaNCQsrV26nVat36NVrOr17TydzFMnKlUtb0jCmGPB6VdUBTmwcF6AkcAi4yQ9xmRB08OBRBg2az5tvLiQ9XTnjjDL06lWgkSeNMWHMa1VVnyzPM4C/gZ9UdW/hhmRC0eefr+H++2eSmLifiAjh/vub8/zz7SlbNjbYoRljAizPxCEiUUAp4HNV/cv/IZlQs3Xrfnr0mEJKSjoXXFCFMWO60qzZGcEOyxgTJHkmDlVNE5HXgOkBiMeEiNTUdKKiIhARqlYtywsvtCcmJpLevS+0Mb+NKea8ngEWAhf4MxATOn74YQsXXDCOiRNXHZv28MP/4P77W1jSMMZ4buMYDwwRkerAUpxG8WNUdVlhB2YCb8+eIzz++FzGjXPezlGjlnDzzY3srm9jzAlyTRwi8g7OJbeZN/gNzWYxxbocCWuqysSJq3j44S/5++/DREdH8OijrRg4sLUlDWPMSfIqcdwGDABqBSAWEwQ7dhykZ8//Mm/eJgDatq3B6NFdqF/fehs2xmQvr8QhAKr6ZwBiMUFQvnwJtm07SEJCSYYMuZxbb21spQxjTK68tHHk1iuuCUNz5mzg/POrEB9fktjYKD799DqqVClNfLx1SGiMyZuXS2S2i0h6bg+/R2kKxbZtB+jZ87906DCRxx6be2x6w4aVLGkYYzzzUuK4B9jn5ziMH6WnZzB27FIef/wr9u9PIS4uirp1421wJWNMgXhJHP9T1Z1+j8T4xbJl2+jVaxqLFzs3/XfpUocRIzpTs2b54AZmjAlbeSUOa98IY5s27aN58/GkpytVq5Zh+PBOXHVVPStlGGNOiaerqgqLiHQEhuHc9/EfVX05y/yHcAaGSsPpRPFOu6Kr4GrWLM8ddzShTJlYnn22HWXKWIeExphTl2vjuKpGFFY1lYhEAiOBTkADoKeINMiy2HKgmao2AqYArxbGtouLTZv28c9/TmLBgk3Hpo0b90+GDr3CkoYxptCc6giA+dEcWK+qGwFEZDJwJbA6cwFVneez/ELg5gDGF7ZSU9MZOvRHnn12AUeOpLFr12F+/PEuAKuWMsYUukAmjqqcOFpgItAil+XvAmZmN0NE7sG52ouY08/mkrrF9y7n777bTK9e0/j1178B6NGjIUOHdghyVMaYoiyQicMzEbkZaAa0zW6+qo4DxgHEVqmjE+5oHsDoQsPevUfo338Ob7+9HIDatSswalQXOnSoHeTIjDFFXSATx1bgTJ/n1dxpJxCRy4CBQFtVTQlQbGEnI0P54ovfiY6OYMCAi3n88YuJi4sOdljGmGIgkIljMVBHRGrhJIwewI2+C4hIU2As0NHuHTnZmjW7qFWrPLGxUcTHl+TDD6+mevVy1KuXEOzQjDHFSMBG5VHVNJyxy2cDvwGfqOqvIjJYRLq5i70GlAY+FZEVIjI1UPGFssOHUxk48CsaNRrNq69+f2x6hw61LWkYYwIuoG0cqjoDmJFl2tM+/18WyHjCwaxZ6+ndezp//LEPgF27Dgc3IGNMsReSjeMG/vrrAA88MItPP3WuVj7vvEqMGdOVf/zjzDxeaYwx/mWJIwStXbubZs3GceDAUUqWjGbQoLY88EBLoqNtoEVjTPBZ4ghBdepU5MILq1KqVDRvvdWJGjXKBzskY4w5xhJHCNi/P4Wnn55H794Xcs458YgIU6f2oFSpmGCHZowxJ7HEEUSqypQpq+nXbxbbth1kzZpdzJrl9LJiScMYE6oscQTJxo176dNnBjNnrgegZctqvPKKXVRmjAl9ljgC7OjRdIYM+YHnnvuG5OQ0ypcvwcsvX8rdd19ARIR1SGiMCX2WOAJsy5YkBg9eQEpKOjfddB6vv96BypVLBzssY4zxzBJHAOzde4Ty5UsgItSuXZFhwzpy9tkVufTSs4IdmjHG5FvAuhwpjjIylHfeWc7ZZ7/FxImrjk2/995mljSMMWHLEoef/PrrTtq1e5e77prKnj1HjjWCG2NMuLOqqkJ2+HAqzz23gCFDfiQtLYNKlUrxxhtX0LNnw2CHZowxhcISRyFau3Y3V1wxkU2b9iECvXpdwIsvXkqFCnHBDs0YYwqNJY5CVKNGOUqUiKJx48qMGdOVli2rBTskU0SkpqaSmJhIcnJysEMxYaZEiRJUq1aN6OjCG+jNEscpSEvLYMyYJfTs2ZD4+JLExkYxa9ZNVK1alqgoaz4yhScxMZEyZcpQs2ZNROx+H+ONqrJ7924SExOpVatWoa3Xzm4FtGjRVpo3H8/998/kscfmHpteo0Z5Sxqm0CUnJxMfH29Jw+SLiBAfH1/oJVUrceRTUlIyAwd+zahRi1GF6tXLceWVdYMdlikGLGmYgvDH58YSh0eqyscf/8qDD85m+/aDREVF8NBDLXn66bbWIaExplixOhWPVq7cQc+e/2X79oP84x9nsmzZPbzyyuWWNEyxISLcfPPNx56npaVx2mmn0bVr1yBGdaLPP/+cwYMHBzuMHO3Zs4fLL7+cOnXqcPnll7N3796Tlpk3bx5NmjQ59ihRogSff/45AK1btz42/YwzzqB79+4ATJs2jaeffvqkdfmNqob1I+b0s9Vf0tLST3j+4IOzdPz4pZqenuG3bRqTndWrVwc7BC1VqpQ2btxYDx8+rKqqM2bM0MaNG2uXLl08ryM1NdVf4amq6kUXXaR///235+X9HU9W/fv315deeklVVV966SV99NFHc11+9+7dWqFCBT106NBJ866++mp97733VFU1IyNDmzRpku1yqtl/foAlWsDzrlVV5WDevD/o3XsGY8d2pU2bGgAMHXpFkKMyBmoOmO6X9W56uUuey3Tu3Jnp06dz7bXXMmnSJHr27Mm3334LOL+m77zzTjZu3EjJkiUZN24cjRo1YtCgQWzYsIGNGzdSvXp1hg8fzo033shff/3FRRddxJw5c1i6dCkJCQl0796dLVu2kJycTL9+/bjnnnsAKF26NP369WPatGnExcXxxRdfULly5RNiW7t2LbGxsSQkJADwv//9j+eff56jR48SHx/Phx9+SOXKlbONp1evXmzevBmAN998k1atWrFo0SL69etHcnIycXFxTJgwgbp1T60984svvmD+/PkA3HbbbbRr145XXnklx+WnTJlCp06dKFmy5AnT9+/fz9dff82ECRMApzTYrl07pk2bxvXXX39KMXphVVVZ7Nx5iNtu+5z27d9nzZpdDB36Y7BDMiZk9OjRg8mTJ5OcnMyqVato0aLFsXnPPPMMTZs2ZdWqVbz44ovceuutx+atXr2auXPnMmnSJJ599lnat2/Pr7/+yrXXXnvshA3wzjvvsHTpUpYsWcLw4cPZvXs3AIcOHaJly5asXLmSNm3aMH78+JNi+/777zn//POPPb/44otZuHAhy5cvp0ePHrz66qvZxtOvXz8efPBBFi9ezH//+1/+9a9/AVCvXj2+/fZbli9fzuDBg3niiSdO2uaBAwdOqFbyfaxevfqk5Xfs2EGVKlUAOP3009mxY0eux3vy5Mn07NnzpOmff/45l156KWXLlj02rVmzZseSuL9ZicOVkaG8/fYyHntsLnv3JhMbG8mTT7ahf/9/BDs0Y07gpWTgL40aNWLTpk1MmjSJzp07nzDvu+++47///S8A7du3Z/fu3ezfvx+Abt26ERcXd2y5zz77DICOHTtSoUKFY+sYPnz4sXlbtmxh3bp1xMfHExMTc6wt5YILLmDOnDknxbZt2zZOO+20Y88TExO54YYb2LZtG0ePHj3hPgbfeObOnXvCSX7//v0cPHiQpKQkbrvtNtatW4eIkJqaetI2y5Qpw4oVKzwevROJSK5XPG3bto2ff/6ZK644uaZj0qRJxxJcpkqVKvHXX38VKJb8ssQB/PHHXm6++TN++GELAB061GbkyM6cfXbFIEdmTOjp1q0bjzzyCPPnzz9WIshLqVKl8lxm/vz5zJ07lx9//JGSJUvSrl27Y/cfREdHHzvJRkZGkpaWdtLr4+LiSEpKOvb8/vvv56GHHqJbt27Mnz+fQYMGZRtPRkYGCxcupESJEiesr0+fPlxyySV89tlnbNq0iXbt2p20zQMHDtC6dets9+ejjz6iQYMGJ0yrXLky27Zto0qVKmzbto1KlSrleDw++eQTrrrqqpPu+N61axeLFi06lmAzZVapBYJVVQFly8aydu1uTj+9NJMnX8OsWTdZ0jAmB3feeSfPPPMM55133gnTW7duzYcffgg4SSAhIeGEqpRMrVq14pNPPgHgyy+/PHZlUVJSEhUqVKBkyZKsWbOGhQsX5iuu+vXrs3798V6ok5KSqFq1KgDvvfdejq/r0KEDb7311rHnmSUI39e/++672b42s8SR3SNr0gAn6WbG8t5773HllVfmGFdmG1JWU6ZMoWvXriclurVr19KwYWA6Uy22iWP27PWkpDi/WuLjSzJ1ag/WrPk3N9zQ0G60MiYX1apVo2/fvidNHzRoEEuXLqVRo0YMGDAgx5P1M888w5dffknDhg359NNPOf300ylTpgwdO3YkLS2N+vXrM2DAAFq2bJmvuNq0acPy5ctxLhhy4rnuuuu44IILjjWYZ2f48OEsWbKERo0a0aBBA8aMGQPAo48+yuOPP07Tpk2zLeEUxIABA5gzZw516tRh7ty5DBgwAIAlS5acUPW0adMmtmzZQtu2bU9aR07tHvPmzaNLlwBVYxb0cqxQeeT3ctzNm/dp9+6TFQbpc88tyNdrjQmWULgct7AkJycfuwz2hx9+0MaNGxfauvv27atz5swptPWFi+3bt2v79u1znG+X4xZQWloGw4f/xNNPz+PQoVRKl46hYkXr7tyYQNu8eTPXX389GRkZxMTEZHuFVEE98cQT/PTTT4W2vnCxefNmXn/99YBtr1gkjoULE+nVaxorVzqXvl1zTX2GDetI1aon178aY/yrTp06LF++3C/rrly5Mt26dfPLukPZhRdeGNDtFfnE8dNPifzjH2+jCjVrlmfEiE506XJOsMMyJt9U1drfTL6p2+ZTmIp84mjevCpXXHE2TZuezpNPtqFkycIbzMSYQClRogS7d++2rtVNvqg643FkvQLrVIk/slEgxVapoynb1h17vm7dbh58cDZDh17BOefEA87NfRER9mUz4ctGADQFldMIgCKyVFWbFWSdRabEkZKSxssvf8dLL31HSko6JUpEMWWK02eLJQ0T7qKjowt1BDdjTkVA7+MQkY4i8ruIrBeRAdnMjxWRj935P4lITS/r/eqrjTRqNIZBgxaQkpLOHXc0YcyY0Onq2RhjipKAlThEJBIYCVwOJAKLRWSqqvr2BHYXsFdVzxaRHsArwA25rTdtXwqXXfYBAPXrJzBmzPHebI0xxhS+QJY4mgPrVXWjqh4FJgNZ77e/Esi83XQKcKnk0RKYkexUS734YntWrOhlScMYY/wsYI3jInIt0FFV/+U+vwVooap9fJb5xV0m0X2+wV1mV5Z13QPc4z5tCPwSgF0IBwnArjyXKh7sWBxnx+I4OxbH1VXVMgV5YVg2jqvqOGAcgIgsKeiVAUWNHYvj7FgcZ8fiODsWx4nIkoK+NpBVVVuBM32eV3OnZbuMiEQB5QBv/TYbY4wJiEAmjsVAHRGpJSIxQA9gapZlpgK3uf9fC3yt4X6jiTHGFDEBq6pS1TQR6QPMBiKBd1T1VxEZjNNL41TgbeADEVkP7MFJLnkZ57egw48di+PsWBxnx+I4OxbHFfhYhP2d48YYYwKr2A7kZIwxpmAscRhjjMmXsEkc/uquJBx5OBYPichqEVklIl+JSJG9KzKvY+Gz3DUioiJSZC/F9HIsROR697Pxq4h8FOgYA8XDd6S6iMwTkeXu96RzMOL0NxF5R0R2uvfIZTdfRGS4e5xWicj5nlZc0KEDA/nAaUzfAJwFxAArgQZZlukNjHH/7wF8HOy4g3gsLgFKuv/fV5yPhbtcGeAbYCHQLNhxB/FzUQdYDlRwn1cKdtxBPBbjgPvc/xsAm4Idt5+ORRvgfOCXHOZ3BmYCArQEfvKy3nApcfilu5IwleexUNV5qnrYfboQ556ZosjL5wLgOZx+z4pyn+RejsXdwEhV3QugqjsDHGOgeDkWCmQOAVoO+CuA8QWMqn6Dc4VqTq4E3lfHQqC8iFTJa73hkjiqAlt8nie607JdRlXTgCQgPiDRBZaXY+HrLpxfFEVRnsfCLXqfqarTAxlYEHj5XJwDnCMi34vIQhHpGLDoAsvLsRgE3CwiicAM4P7AhBZy8ns+AcK0yxHjjYjcDDQD2gY7lmAQkQhgKHB7kEMJFVE41VXtcEqh34jIeaq6L5hBBUlP4F1VfV1ELsK5f6yhqmYEO7BwEC4lDuuu5DgvxwIRuQwYCHRT1ZQAxRZoeR2LMjidYM4XkU04dbhTi2gDuZfPRSIwVVVTVfUPYC1OIilqvByLu4BPAFT1R6AETgeIxY2n80lW4ZI4rLuS4/I8FiLSFBiLkzSKaj025HEsVDVJVRNUtaaq1sRp7+mmqgXu3C2EefmOfI5T2kBEEnCqrjYGMMZA8XIsNgOXAohIfZzE8XdAowwNU4Fb3aurWgJJqrotrxeFRVWV+q+7krDj8Vi8BpQGPnWvD9isqt2CFrSfeDwWxYLHYzEb6CAiq4F0oL+qFrlSucdj8TAwXkQexGkov70o/tAUkUk4PxYS3PacZ4BoAFUdg9O+0xlYDxwG7vC03iJ4rIwxxvhRuFRVGWOMCRGWOIwxxuSLJQ5jjDH5YonDGGNMvljiMMYYky+WOExIEpF2bm+2YXtTlohsEpFH8ljmdhE5GKiYjCkMljiM34jIu+7JP+ujSbBjAxCR+T4xpYjIWhF5QkQiC2kTFwKjfLanInJtlmU+xunF1a+yHP+DIrJSRG4v4Hqy7oMpZixxGH+bC1TJ8sh2bIAgmYATU11gOPA8kGspwStV/dunl+KcljkSwLv778bZ18Y4CWuCiFwRoG2bIsQSh/G3FFXdnuWRJs5gU6tE5JCIbBWR/4hI+ZxWIiLlROQDd1CaZBHZKCIPZJk/zp1/QEQWeOyT6rAb0yZVHQF8BXR311lBRN4Tkb0ickRE5orIufmI6VhVldtXFjh382vmc9+qKhE5x513XpZ9v0dEdolItPu8gYhMd/dzp4hMEpHTPezrPndfN6jqizg9LHTw2c6FIvKlu639IvKdOB0AHtuf7PbBnfdPEVnqHoc/ROQFt7sPUwRZ4jDBkgE8AJwL3IgzhsJbuSz/PHAe0BWndHAnbmds4vSrMh2nO+iuQFOcgZu+Fg9jC2RxBLdLBuBdoAXOmAXNcbpkmCUicXnFlI0L3b+Zv/ovzLqAqq7F6WfppiyzbgI+UdVUd3++wSm1NQcuw+le5gtxegPOk4hEisj1QEUg1WdWGeADoLW77hXADBHJHJ4g231wSy0fAiNw3s87cfqLe9FLPCYMBXuEKnsU3QfOiTcNOOjzmJnDsh2BFCDCfd4Opw+hBPf5VJw+h7J7bXt33XFZpq8AHs0lvvnACPf/CJ8YXsHpNVaBNj7Ll8MZ5+VfecXkzt8EPOLzXIFrsyxzO3DQ53lf4E+OdwdUHSfJ/sN9Phj4Kss6Krjrbp5LLIqTFA+674kCu4Czc3mNANuAm/PYh2+Ap7JM6+5uS4L9ObRH4T+sxGH87Rugic/jXwAi0l5E5ohIoogcAP4PZ5jPnKpcRgM3uI26Q0TEd4yRC4CSwN9uw+9Bt/qnIVA7j/jucZdNxkkEE4Fngfo4J+wfMxdU1STgZ5yhRvOKqaAmA2fg/OoHZ9yIP1T1B/f5BUCbLPuZORBPXvvaH+c9uBwnqfZV1fWZM0WkkoiMdS8SSAIOAJVwklduLgAGZonpI6AUOb+fJoyFRe+4Jqwd9j05AYhIDZyqpfHA0zjjppwPTMJJHidR1Znu6zrhdIc9XUQ+VdU7cEoLOzh+svW1P4/4PsZJFCnAX6qa7saY22vUQ0wFoqo7RWQOTvXUN+7fD30WicA5dtk14O/IY/Xb3fdivYhcBywTkWWqusad/x5QGXgQp7SUgtPmk1dbRQTOMfw0m3nFsavyIs8ShwmGZjgnowd9TtRd83qRqu7CqYP/QERmApNEpBewDOeEl6Gq+R1fIilrYnP9hnNCvAjnBI6IlMVp05iQV0ya/eBZqTjdfOdlIjBCRMa52/O9/HUZcD3wp6qmZvdiL1R1vYj8H/AqkNnl/sU4pZDpACJSGactI699WAbUy+E4miLIqqpMMKzD+ew9IM5gOz1xGspzJCKDRaS7iNQRZ+Cdq4GN7gl6LvA9TgNxJ3edF4nIsyKSXSkkT6q6DvgCGCsird0rnSbilGA+8hBTdjYBl4rI6SJSIZfNf47TQP82sFidRvNMI3HaWj4WkRYicpaIXCbOFWVl8rmbQ4GuItLcfb4WZxzuBiJyIU612VEP+zAYuNE9Hg1FpJ6IXCsir+YzHhMmLHGYgFPVVUA/4CFgNU67R173TqQALwArcZJEGeCf7voUZzCar3Gqv37HGRa0LvDXKYR6B7AIp+1jEU47SkdVPZJXTDl4GLgEp01ieU4LqXPvx2c491tMzDLvL6AVTvvLLOBXnGSS4j48c9+HuThXh4FzNVRpYClO0ngHJ1Hkug+qOhvo4k5f5D4G4IyyZ4ogG8jJGGNMvliJwxhjTL5Y4jDGGJMvljiMMcbkiyUOY4wx+WKJwxhjTL5Y4jDGGJMvljiMMcbkiyUOY4wx+fL/TRENX3bhtX0AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEaCAYAAAAVJPDdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2FUlEQVR4nO3dd3xUVf74/9c7PaRQEmoCBASkiZQgKFaayCro2ntd111Rf9bFssrqqqyuu18bq1g+uKtiXZVVLKCiiBSDCCK9EwgQAoRQ0t+/P+7NOOkzkMxkkvfz8cjDO+eee+d9E5z3nHPuPUdUFWOMMaZMWLADMMYY07BYYjDGGFOOJQZjjDHlWGIwxhhTjiUGY4wx5VhiMMYYU44lBhOyRORyEfnCh3oviMifAxFTfRORa0TkO6/XKiLdghmTaXwsMZh6ISKbROSwiBwQkZ0iMk1E4uvyPVT1DVUd7UO9m1T1kbp8bwARmSQiRe417hOR70XkxLp+n6MhImeKyLcikici2SLyjYiMC3ZcpmGzxGDq0zmqGg8MBNKBBypWEJGIgEdVt952rzEZ+Bp4N8jxeIjIBTjx/BtIBdoCDwLnHMG5RETs86KJsD+0qXequg34FOgLnu6Pm0VkLbDWLTtbRH7y+ubdr+x4EekoIv91v/HmiMhzbrmnW8X94PqniOwSkf0i8rOIlL3fNBH5q9f5fici60Rkj4jMEJEOXvtURG4SkbVuLM+LiPhwjcXAG0CKiLR2z9VcRF4RkSwR2SYifxWR8ApxrHS/za8QkYFu+UQRWe9Vfp6/v3M35n8Aj6jqy6qaq6qlqvqNqv7OrTNJRF73OibNvf4I9/UcEXlUROYBh4C7RSSjwvvcLiIz3O1oEfm7iGxxW4kviEisv7Gb4LPEYOqdiHQExgJLvIrPBYYAvUVkAPAq8HsgCXgRmOF+0IQDHwObgTQgBXirircZDZwK9ACaAxcBOVXEMhx43N3f3j1vxfOdDQwG+rn1zvThGqOAq9z33OsWTwOKgW7AADfGG9z6FwKT3GMSgXFe8a4HTnGv4y/A6yLSvrYYKjgW6Ai85+dxFV0J3AgkAC8Ax4pId6/9lwFvutuTcX7//XGuOQWnhWJCjCUGU58+FJF9wHfAN8BjXvseV9U9qnoY54PnRVVdqKolqvoaUAAMBU4AOgB3q+pBVc1X1e+orAjnw6snIKq6UlWzqqh3OfCqqv6oqgXAvcCJIpLmVWeyqu5T1S043UP9a7jGi9xrPAz8DrhAVYtFpC1OMvz/3Lh3Af8ELnGPuwF4QlV/UMc6Vd0MoKrvqup29xv+2zitqhNqiKEqSe5/q/od+GOaqv6iqsWqmgt8BFwK4CaInjhJXHD+jre7f9c8nL/3JdWd2DRclhhMfTpXVVuoamdV/aObBMps9druDNzpdt3scz9oO+IkhI7AZrerplqq+hXwHPA8sEtEpopIYhVVO+C0EsqOO4DzTT3Fq84Or+1DQE2D5u+oaguc/vvlwCCva4oEsryu6UWgjbu/I07LoBIRucqrW20fThdccg0xVKWs9eFvS6OirRVev4mbGHBaCx+q6iGgNdAMWOwV92duuQkxlhhMsHhP67sVeNRNImU/zVR1uruvky+D1Kr6jKoOAnrjdGncXUW17Tgf2gCISBzOt+ttR3EtqOpunG/Mk9xun604rZ5kr2tKVNU+7iFbgWMqnkdEOgMvAROAJDfpLAdqHeeoYLX7HufXUOcgzod5mXZV1Kk4/fIsoLWI9MdJEGXdSLtxWk19vK63uTswb0KMJQbTELwE3CQiQ9xB5DgR+Y2IJACLcLpDJrvlMSIyrOIJRGSwe3wkzgdePlBaxXtNB64Vkf4iEo3T3bFQVTcd7UWo6mrgc+AetxvrC+ApEUkUkTAROUZETnOrvwzcJSKD3Gvu5iaFOJwP42z3uq7FHbT3MxYF7gD+LCLXesVwsohMdav9BJwqIp1EpDlOt1pt5y3CudPpSaAVTqJAVUtx/o7/FJE2buwpIlLr+IxpeCwxmKBT1Qyc/vnncAZu1wHXuPtKcG6v7AZsATKBi6s4TSLOB9NenK6iHJwPr4rvNRv4M/A+TsI5hrrtB38SuNH9cLwKiAJWuHG9h9u1o6rvAo/ifOPOAz4EWqnqCuApYD6wEzgOmHckgajqezi/q+twWko7gb/ijBOgqrOAt4FlwGKcQX5fvAmMBN6t0MX3J5y/3QIR2Q/MxhkENyFGbKEeY4wx3qzFYIwxphxLDMYYY8qxxGCMMaYcSwzGGGPKCfUJzEhOTta0tLRgh2GMMSFl8eLFu1W1ygcQQz4xpKWlkZGRUXtFY4wxHiKyubp91pVkjDGmHEsMxhhjyrHEYIwxppyQH2MwpqkoKioiMzOT/Pz8YIdiQkhMTAypqalERkb6fIwlBmNCRGZmJgkJCaSlpeHDonLGoKrk5OSQmZlJly5dfD4uYF1JIvKqOMsuLq9mv4jIM+IsubisbJlDY4wjPz+fpKQkSwrGZyJCUlKS363MQI4xTAPG1LD/LKC7+3Mj8K8AxGRMSLGkYPx1JP9mAtaVpKrfVlg+saLxwL/deeQXiEgLEWlfzfKMR+3xmStZsmVfpfIOLWL42wX9iI4Ir3yQMcY0AQ3prqQUyi8jmEn55RY9RORGEckQkYzs7OwjerM1O/NYtGlPpZ8Pf9rO0q25R3ROYxo7EeGKK67wvC4uLqZ169acffbZQYyqvA8//JCHH3442GFUa8+ePYwaNYru3bszatQo9u7dW23d/fv3k5qayoQJEzxlY8aM4fjjj6dPnz7cdNNNlJSUAHDXXXfx1Vdf1UmMDSkx+ExVp6pquqqmt259ZEvKTjyrF2/fOLTcT6/2zhLBJaW2RoUxVYmLi2P58uUcPuws3z1r1ixSUqr8/lat4uIal+8+ak888QR//OMffa5f3/FUNHnyZEaMGMHatWsZMWIEkydPrrbun//8Z0499dRyZe+88w5Lly5l+fLlZGdn8+677wJwyy231HgufzSkxLANZ4H0Mqkc5Tq8NTm2XQJDuiaV+0mMsZu0jKnN2LFj+eSTTwCYPn06l156qWffnj17OPfcc+nXrx9Dhw5l2bJlAEyaNIkrr7ySYcOGceWVV5Kdnc2oUaPo06cPN9xwA507d2b37t0AnHvuuQwaNIg+ffowdepUz7nj4+O5//77Of744xk6dCg7d+6sFNuaNWuIjo4mOTkZgP/9738MGTKEAQMGMHLkSM8xVcVz/vnnM3jwYAYPHsy8ec6ieYsWLeLEE09kwIABnHTSSaxevfqof38fffQRV199NQBXX301H374YZX1Fi9ezM6dOxk9enS58sRE5wtscXExhYWFnjGEzp07k5OTw44dO446xob0STgDmCAibwFDgNz6Gl8wJtSlTfykXs67afJvaq1zySWX8PDDD3P22WezbNkyrrvuOubOnQvAQw89xIABA/jwww/56quvuOqqq/jpp58AWLFiBd999x2xsbFMmDCB4cOHc++99/LZZ5/xyiuveM7/6quv0qpVKw4fPszgwYM5//zzSUpK4uDBgwwdOpRHH32Ue+65h5deeokHHnigXGzz5s1j4MBfb2g8+eSTWbBgASLCyy+/zBNPPMFTTz1VKZ7LLruM22+/nZNPPpktW7Zw5plnsnLlSnr27MncuXOJiIhg9uzZ3Hfffbz//vvl3jMvL49TTjmlyt/Vm2++Se/evcuV7dy5k/bt2wPQrl27KhNcaWkpd955J6+//jqzZ8+utP/MM89k0aJFnHXWWVxwwQWe8oEDBzJv3jzOP//8KuPxVcASg4hMB04HkkUkE3gIiARQ1ReAmcBYnDVjDwHXBio2Y4zv+vXrx6ZNm5g+fTpjx44tt++7777zfHAOHz6cnJwc9u/fD8C4ceOIjY311Pvggw8Ap8+8ZcuWnnM888wznn1bt25l7dq1JCUlERUV5RnLGDRoELNmzaoUW1ZWFt7dy5mZmVx88cVkZWVRWFhY7l5+73hmz57NihUrPPv279/PgQMHyM3N5eqrr2bt2rWICEVFRZXeMyEhwZP8/CUiVd41NGXKFMaOHUtqamqVx33++efk5+dz+eWX89VXXzFq1CgA2rRpw/bt248oFm+BvCvp0lr2K3BzgMIxJqT58s2+Po0bN4677rqLOXPmkJOT49MxcXFxtdaZM2cOs2fPZv78+TRr1ozTTz/dcw9+ZGSk50M0PDy8yrGB2NhYcnN/vXnklltu4Y477mDcuHHMmTOHSZMmVRlPaWkpCxYsICYmptz5JkyYwBlnnMEHH3zApk2bOP300yu9p78thrZt25KVlUX79u3JysqiTZs2lY6bP38+c+fOZcqUKRw4cIDCwkLi4+PLjSHExMQwfvx4PvroI09iyM/P9yS7o9GQxhiMMSHiuuuu46GHHuK4444rV37KKafwxhtvAM6HfHJysqdP3NuwYcN45513APjiiy88d+bk5ubSsmVLmjVrxqpVq1iwYIFfcfXq1Yt169Z5Xufm5noGx1977bVqjxs9ejTPPvus53VZC8D7+GnTplV5bFmLoaqfikkBnKRaFstrr73G+PHjK9V544032LJlC5s2beLvf/87V111FZMnT+bAgQNkZTk97MXFxXzyySf07NnTc9yaNWvo27dvtdfpK0sMxhi/paamcuutt1YqnzRpEosXL6Zfv35MnDix2g/jhx56iC+++IK+ffvy7rvv0q5dOxISEhgzZgzFxcX06tWLiRMnMnToUL/iOvXUU1myZAlOB4QTz4UXXsigQYM8A9JVeeaZZ8jIyKBfv3707t2bF154AYB77rmHe++9lwEDBtTZ3UsTJ05k1qxZdO/endmzZzNx4kQAMjIyuOGGG2o89uDBg4wbN45+/frRv39/2rRpw0033QQ4c2mtW7eO9PT0o45Ryn6BoSo9PV3raqGei1+cz8KNe5j+u6GceExSnZzTmLqycuVKevXqFeww6kRBQQHh4eFEREQwf/58/vCHPxxxP31Ft912G+eccw4jR46sk/OFig8++IAff/yRRx55pNK+qv7tiMhiVa0yizSku5KMMU3Eli1buOiiiygtLSUqKoqXXnqpzs593333sXDhwjo7X6goLi7mzjvvrJNzWWIwxgRc9+7dWbJkSb2cu23btowbN65ezt2QXXjhhXV2LhtjMCaEhHrXrwm8I/k3Y4nBmBARExNDTk6OJQfjs7L1GCrehlsb60oyJkSkpqaSmZnJkU4caZqmshXc/GGJwZgQERkZ6dcqXMYcKetKqgcbsg9w5SsLuejF+ZTaTK3GmBBjLQYfzFu3myVb9nLzGd1qXA1JVXnt+008/ukqCopLAdhzqJDk+OhAhWqMMUfNEkMttu45xOUvO/dEj+rdjmPbJVRZ72BBMfe8v4xPltmEsMaY0GZdSbWYNOMXz3ah2wqoKDuvgAtemM8ny7KIiwrnX5cPJCku6ojeb9f+fP4xaw3vZGytvbIxxtQDazHUYOGGHL5ctavGOtv2HeaKlxeycfdBuibHMfWqdLq1ieeBD5d76uTlF1FUorSqIVlk7j3Ei99s4O2MrRQWl5IQE8FF6R2rrW+MMfXFEkMNnpq1psb9uw8UcOnUBWzZc4je7RP59/UnVBpP+PyXHfzt01VEhIex8L4RRIaXb6TlHi7i+a/XMW3eJgpLfm2RFJfYoLUxJjgsMVRj+bZcFm3cQ0J0BEnxUWzKOVRuf35RCTe8lsGWPYc4LqU5r98whOaxkZ79Re6H/P0f/NpyOFRYQvNYJzGUlipvLtrCU1+sZu8hZ/GPccd34LqTu3Du8/Pq+/KMMaZalhiqMe37TQBcmN6RRZvKL0Siqtz17lJ+2rqPlBaxvHJNermkALA//9cpesMEvO9a3bj7IH96bxmLNu0B4IS0Vjxwdi/6pbbgUGHNU/uqKqoQFlb93VHGGHM0bPC5CvlFJcz82bm76KoTO1fa/98ft/HxsizioyOYdu1g2iRUftx8VO+2dGgew3s3nUhctJt/FV79biNj/t+3LNq0h+T4aJ6/bCBv/34o/VJb1BjT/vwinv1yLQMemcVNry8+6ms0xpjqWIuhCl+u2smhwhL6d2xBWnL55Qi37jnEQ+6dSpPG9aF726pvX5165aBK3+x//3oGCzY4rYTfDkjhz2f3pmUtdy/tzy9i2rxNvDx3g6cV8tPWfUd6acYYUytLDFX431KntTDu+A7lyhXlT+8v40BBMWP6tOP8gSnVnsNZ5NvZznM/0Bds2ENCTARPXnA8Y/q2qzGGUvdhuX/OXsM+dwyiT4dEftm+/0gvyxhjfGKJoQq5h50P4oof3p8t38H363No2SySx357XI1PQXsrG2PokhzHa9eeQKekZrUeU1Bc6mmZnJDWittH9aBr6ziGPPalX9ey52Ah8dERREVYr6ExxjeWGKpxTOs4OrSILVc2Zc56AO4cfWyNzyRU9ODZvdm69zB3ju5Bs6iaf+VhIp5E0qlVM+4b24sz+7RFRNi5P79c3ZJS5atVu0hLalauS0tVmb8hh1e/28iXq3Zxdr8OPHvpAMAZ+G7fPIaYyHCf4zfGNC2WGKpxSvfWVZZ3TY7jksH+PXh2zTDfZ8SMiQznkXP7UlRcyiUndKryA1xxWi9PfbGatbsO0KdDIp/cegrFJaV89NN2Xv5uIyuzfu1yWrszj/cXZ/Lv+ZtYmpnLuOM78IybKIwxpiJLDNU4uVuyZ9vruTNuG9mdiPD67Za5fEjlO6G8ZecVlLszad+hIt7N2MpzX69js/u8RXJ8FKd2b81/l2xj1Y487nx3qad+Vu7h+gncGNMoWMezl1KvlbEGdm7p2fb+9n12v/ID0oEU7nWHU3J8NL8/rSvgTMtx93vL2JxziC7JcTxxQT/mTRzOzcO7eer3bp/INSelVTrnlpxDPP7pSk7+21e85j67UZ1defm2epgxTYC1GLyszz7o2a5qDOHSEzqW+3AOtOT4aO4a3YPI8DCuGNqZvPxiXvxmAwBpSc24ZXh3xvfv4GnRdE2OY+qVg0iKj2Zgpxb8sGkv077f5I5N7OQ/8zczZ002ZZ/1b/+wld0HCjirb3t6d0gEnNbJRz9t473Fmazakccdo3pw64juQbl+Y0xgWGLwsudgIVA5KTx5QT++WZPNA7/pHYywypkw/NcP5bjoCB49ry/x0RH85rj2lbq4RITRfSrfFvvjln1cNy0DgKiIMHq3T+SnrftYkbWfFVn7WbUjj/MGpPD+4kzmrMmmxOux7X/MWsOZfaqfftwYE/osMVThuJTm5V5fmN6RCxvoTKe1jUd4i/a6ZbVjq1iuGNKZC9M7sisvn7FPz0VEKClVZq3YyawVOwGICBNG9mpDcnw0b/3gTAX+f/M2Mvn8fnV7IcaYBsMSg5ekuChyDhZy3oDqH1wLZX1TmvPw+D60bx7L8J5tPN1ireKimDdxOCu27+f615yWxLFtE7hocEfG9+9Acnw0uw8UeBJDkTvz67pdeXy3djdj+7WvcloQY0xoklAfTExPT9eMjIw6OdfmnIMszczlnH7tfX54rTEpLillxtLtdE5qxsBOLSv9Dt7N2Mrd7y3j2LYJxEaFe6bm+N0pXbi/AXSzGWN8JyKLVTW9qn3WYvDSOSmOzklxtVdspCLCw/jtwNRa663emVfu9aHCkvoKyRgTBJYYjM+OS21Ocnw0PdslcMGgVLLzCnh05spgh2WMqWMBTQwiMgZ4GggHXlbVyRX2dwJeA1q4dSaq6sxAxmiq17NdIhkPjPS8/s+CzUGMxhhTXwL2gJuIhAPPA2cBvYFLRaRix/QDwDuqOgC4BJgSqPjMkXtj4Ra+XZNdqXzn/nz+NWc91/7fIlbtsFlhjQkVgWwxnACsU9UNACLyFjAeWOFVR4FEd7s5sD2A8Rk/xXrN43TVq4v44vZT6dSqGbNX7uS9xZl8uybbs3Ldcakt6NkusZozGWMakoDdlSQiFwBjVPUG9/WVwBBVneBVpz3wBdASiANGqmql5cpE5EbgRoBOnToN2rzZujSC4VBhMeOfm8faXQc8Zc1jIz3TlkeGC63jo9mem8+pPVoTFR7Gj1v28tylAzjJay4qY0zg1XRXUkObK+lSYJqqpgJjgf+ISKUYVXWqqqaranrr1lXPgmrqX7OoCF6/YUi5stzDRfTpkMikc3qz8L6RXHJCJwC+XZPN7JU72XOwkMteXsjCDTlVndIY0wAEsitpG+D9+HCqW+btemAMgKrOF5EYIBnYFZAIjd/aJsYw6/ZTueu9ZQzo2IKL0jt65lkCPFNn9E1JJOdAIVm5zpoSGZv3MqRrUlBiNsbULJCJ4Qegu4h0wUkIlwCXVaizBRgBTBORXkAMUHlU0zQo3dsm8NHNw6rcd2afdqx8eAyxUeHkF5Uw9pm5bPCarNAY0/AErCtJVYuBCcDnwEqcu49+EZGHRWScW+1O4HcishSYDlyjof5otiE2yhmkjokMZ0wVk/oZYxqWgD7H4D6TMLNC2YNe2yuAqr96mkblYEFxsEMwxlSjoQ0+myZiypz1zHZncDXGNCw2JYYJqDYJ0Z7tb9dmU1hSyohebYiOqLy2tTEmOKzFYALqqhPTGNbNuRvp3/M388c3fuS/P1a8Oc0YE0yWGExAhYUJJ3cr/+xJXn5RkKIxxlTFupJMwF07LI3ubeL5YsUO3snIZGVWHqraJNfAMKYhshaDCbiYyHBG9m5L89hIAD5Yso2Pl2UFOSpjTBlLDCZourWJ92zv3J8fxEiMMd4sMZiguXhwJ3470Flf+6et+7BnGY1pGCwxmKBqERsFwMfLsvifdScZ0yBYYjBB1dOdZA/gkY9XkLn3EBmb9ljrwZggsruSTFBdNLgjizfv5e2MrWTnFXDy374GnHUdvrzzNJLjo2s5gzGmrlmLwQTd+AEdKpXlHi7iq5U227oxwWAtBhN0Jx2TzA/3j+TjZdtJjo/mlulLAPgpcx8HC4u59IROxETalBnGBErAlvasL+np6ZqRkRHsMEwduve/y5i+aGu5stl3nEq3NgnVHGGM8VcoLe1pDElxlccV/vT+zxQUlwQhGmOaHutKMg3OrSO6c0bP1qS2bMaQx74EYPHmvUz5ej2pLWM5d0AKkeH2ncaY+mKJwTQ4URFhDOrcCoAplw/kj2/8CMDTX64FnBXhzu5XecDaGFM37GuXadDGHtee64Z1KVc24c0l/LR1H7tsGg1j6oUNPpsG71BhMUu27OOTn7N4c+EWT3mYwCtXD2bVjjy27DnE/b/pRXy0NYKN8UVNg8/2f5Fp8JpFRTCsWzKDOrfk+3W72ZRzCIBShWun/eCpl5dfxNOXDCA8zKbvNuZoWFeSCRkxkeH864pB/P60rnRJjqu0/+NlWfywaU8QIjOmcbEWgwkpvdon0qt9IledmMY3q7MZ0asN36zO5p73lwFwuNBuaTXmaFmLwYSklBaxXDakE20TY7hocEdOP7Z17QcZY3xiicEYY0w5lhiMMcaU4/cYg4gMAUYAbaiQWFT11jqKyxhjTJD4lRhE5C7gCWAdsB3wfggitB+IMMYYA/jfYrgNuFVVn6uPYIwxxgSfv2MMicDM+gjEmLqwcsf+YIdgTMjzNzFMB8bURyDGHI1StyPzic9Ws3xbbnCDMSbE+duVtBX4i4gMA5YBRd47VfUfdRWYMf7o1S6Bb9dkA3DrW0uYeespxESGs23fYXIOFNAvtUVwAzQmhPibGG4ADgAnuT/eFLDEYIJi4lk9WbJ1H4s27mFD9kGe/3ody7fl8vVqJ1ncPrIHt47ohojNo2RMbQI6u6qIjAGeBsKBl1V1chV1LgIm4SSapap6WU3ntNlVTZmvV+/i2v/7odr9XZLjOOmYJPLyi3nywn5ER9g60qbpqpfZVUUkHlBVPehj/XDgeWAUkAn8ICIzVHWFV53uwL3AMFXdKyJtjjQ+0/SccWwbzhuQwgdLtpGW1IzLhnQi52AhL36zAYCNuw+ycbfzz/XGU7vSN6V5MMM1psE6kgfcbgb+BKS4rzOBv6nqlFoOPQFYp6ob3OPeAsYDK7zq/A54XlX3AqjqLn/jM03bo+f15fqTu9C7fSJh7vTbvdsncttbPwEQHx3BgYJiSkN8HRJj6pO/D7jdh/ON/u/Ad27xKcBkEUmsqmvISwrO4HWZTGBIhTo93PeZh9PdNElVP6sijhuBGwE6derkzyWYRq5ZVESllsD4/imM758CwDnPfsfPdteSMTXyt8VwE3Cjqk73KvtSRNYCjwE1JQZf4+kOnA6kAt+KyHGqus+7kqpOBaaCM8ZwlO9pjDHGi7/PMbQBqhrdWwS0reXYbUBHr9epbpm3TGCGqhap6kZgDU6iMMYYEyD+JoY1QFV3CV0GrK7l2B+A7iLSRUSigEuAGRXqfIjTWkBEknG6ljb4GaMxxpij4G9X0iTgHRE5FZjnlg0DTgMurOlAVS0WkQnA5zjjB6+q6i8i8jCQoaoz3H2jRWQFUALcrao5fsZojDHmKPj9HIOIDAJuB3q5RSuBp1R1SR3H5hN7jsH446yn57Iyy5lP6di2CRQUl/DJracQF22r3JqmpU6fY1DVxcAVRx2VMUEQE/lr7+nqnXkAjPrHN8y5+wyiImzdKmPAhzEGEWnlvV3TT/2GaszRu21Ed5rHRtKzXYKnbHtuPptyfHpO05gmwZcWQ7aItHcfNttN1QvyiFtucwyYBu30Y9uw9KHRACzZspfzpnwf5IiMaXh8SQzDgT3u9hn1GIsxATWgU0u6t4ln7a4DwQ7FmAal1sSgqt9UtW2MMaZx8mu0TUR6i8ixXq9HicjrInKvO0meMcaYEOfvbRivAgMARKQj8BHQCrgZ+GvdhmZM/SsqKQVg9D+/5WBBcZCjMaZh8Dcx9AR+dLcvABaq6ljgSuDSugzMmEBonRDt2V6auS94gRjTgPibGMKBQnd7BDDT3V5P7XMlGdPgPHvpQM/2ZS8tZN+hwhpqG9M0+JsYlgN/EJFTcBJD2ZTYKTi3shoTUto1j2FEz1/Xg8o5aInBGH8Tw59wFtOZA0xX1Z/d8nE4M6waE3Kev3wgLZpFArD/cBHZeQVBjsiY4PJrSgxV/VZEWgOJZausuV4EDtVpZMYESExkOK2aRbHvUBHn/+t7oiPCWXj/CBJjIoMdmjFBcSRzJZUAeyuUbaqrgIwJhrJ5kkoVDheVMO7Z72gWFcFHE4YRGW5zKJmmpdbEICIzgCtUdb+7XS1VHVdnkRkTQJPG9eHnzFxemruBXXkFbMpxGsC78gpIaREb5OiMCSxfWgw5/Do/kq2NYBqloV2TGNo1iejIMBZu3MO3q7PJKyhm9Y79lhhMk+P3egwNja3HYOrDoEdmee5Q+uPpx9AqLoobTuka5KiMqTs1rcfg75QY7UQktYryVBGx5xhMo3HiMUme7Slz1vPXT1baMw6myfB3VO114Kwqys8E/nP04RjTMDx32UBO69GaqIgwRJyyopLQbl0b4yt/E0M68G0V5XPdfcY0Gq9cnc7Pk0aTFBcV7FCMCSh/b1eNAKKrKI+pptyYkBURHub//dzGNAL+thgWAn+oovxm4IejD8cYY0yw+fuF6H7gKxHpB3zllg3HmYp7ZF0GZowxJjj8ajGo6gLgRGAT8Fv3ZyNwoqra4rnGGNMIHMmUGEuBy+shFmMapIIiZzGfz3/ZwRVDOwc5GmPqn9+TwIhIWxG5S0SmiEiyWzZMRLrUfXjGBF/ZPEoPfLicvPyiIEdjTP3z9wG3QcBqnBbDDUCiu2sU8GjdhmZMw3DR4I6e7cLi0iBGYkxg+Nti+DvwtKoOALwnrf8cGFZnURnTgPxpTE9iI8MBeP7r9UGOxpj6529iGAS8VkV5Fra0p2nE4mOc4bhX520kbeInPPn5qiBHZEz98TcxHAZaVlHeE9h19OEY0zDdfeax5V4///V6DhYUBykaY+qXv4nhI+AhESl7yllFJA34G/B+XQZmTENyUXpHHj2vL628pscoUSXUZyc2pip+TbstIonATKAfEAfswOlCmgeMVdWD9RFkTWzabRNoXe/9hFKv/20+ve0UerVPrP4AYxqgOpt2GygGTgfOBf4EPA2MUdXTgpEUjAmGtokx5V6f+/w8ikvsbiXTePicGEQkHMgFeqjqV6r6d1V9QlVn+3GOMSKyWkTWicjEGuqdLyIqIjZjq2lwXrvuBJ68oB+DOjvDbQXFpRSXWpeSaTx8TgyqWgJsBo5oDmI3sTyPs55Db+BSEeldRb0E4DacCfuMaXB6tE3gwvSOvP+Hkzxl72RsDWJExtQtf7uSHgEmlz3x7KcTgHWqukFVC4G3gPHVvMffgPwjeA9jAioh2rmN9cGPfmHcc9/ZYLRpFPxNDHcBJwPbRGS9iCzz/qnl2BTA+2tVplvmISIDgY6q+klNJxKRG0UkQ0QysrOz/bwEY+rOX8/r69lelpmL9SiZxsDfSfTeAxSQug5ERMKAfwDX1FZXVacCU8G5K6muYzHGV+P7pzC8ZxuOm/RFsEMxps74lBhEpBnwJM7dSJHAl8Atqrrbj/faBnT0ep3qlpVJAPoCc8RZZLcdMENExqmq3Y9qGqyEmEjCBGstmEbD166kv+B8k/8EmI6zKM+//HyvH4DuItJFRKKAS4AZZTtVNVdVk1U1TVXTgAWAJQVjjAkwXxPDb4HrVfVGVb0N+A1wrnunkU9UtRiYgDPh3krgHVX9RUQeFpFx/gZuTENS1lq4+Y0fgxuIMXXA1zGGjsDcshequkhEioEOlB9QrpGqzsR5ctq77MFq6p7u63mNCbaUFrFs23eYz37ZwZOfr+LSEzqR2rJZsMMy5oj42mIIBworlBVzBCvAGdMYvXPTiZ7t579ez8UvLghiNMYcHV8/2AV4XUS812CIAV4SkUNlBapqXUKmSUppEcvD4/vw4Ee/ALBt3+EgR2TMkfO1xfAasB3I8fp5HacbybvMmCbrqhPTWP/YWADC6vyGbmMCx6cWg6peW9+BGGOMaRj8ffLZGGNMI2eJwRhjTDmWGIwxxpRjicGYelCq2EyrJmRZYjCmnnS5dybfr/NnOjFjGgZLDMbUoTCBzkm/PvF82csLuX7aDxTZ0p8mhFhiMKYOiQhf3H4qN512jKfsy1W76H7/pzz8vxVBjMwY31liMKaORUeEM/Gsnsy/d3i58umLtgQpImP8Y4nBmHrSvnksGx8f61kbWrHBaBMaLDEYU49EhB5t4wHILyrlnR+2crCgOMhRGVMzSwzG1LNwr4mT7nl/GX0e+pzv1trdSqbhssRgTD1rFhXBvWf1LFf2p/eXBSkaY2pnicGYAPj9acewafJvuGV4NwD25xcFOSJjqmeJwZgAuuakNAAiw+1/PdNw2b9OY4wx5VhiMMYYU44lBmOCYM/BQuauzQ52GMZUydc1n40xdSDCa2zhylcWcc1JaXRrE8+BgmJG925L19bxQYzOGIeE+tTA6enpmpGREewwjPHZ81+v48nPV1e57/qTu/Dns3sHOCLTFInIYlVNr2qfdSUZE2A3n9GNpy/pX+W+z5bvCGwwxlTBupKMCYLx/VMY3z/F83rJlr2cN+V7wuyrmmkA7J+hMQ1AUlw0AFv3HObxT1dyuLDEVoAzQWMtBmMagJZxkZ7tF7/ZwIvfbADgluHdSIiJ4ORurendITFY4ZkmxloMxjQACTGRfHP36ZXKn/1qHY/NXMWDHy0PfFCmybLEYEwD0Tkpjl/+ciaLHxjJHaN6ANDHbSVkbN7LoUKbrtsEht2uakwDtmL7fsY+M9fz+oxjnS6l5rGRjO+fQtvEmCBGZ0JZTber2hiDMQ3YMW3iSGkRy7Z9hwH4enU2X692nph+bOYq/n7h8VwwKDWYIZpGyLqSjGnAoiPCmTdxOG/eMITYyPBK+9/+wdaRNnUvoC0GERkDPA2EAy+r6uQK++8AbgCKgWzgOlXdHMgYjWmITuqWzMpHxnheT5u3kUn/W0Hm3sOUliphXqvEGXO0AtZiEJFw4HngLKA3cKmIVHz2fwmQrqr9gPeAJwIVnzGhpE9KcwCycvO5/8OfgxyNaWwC2ZV0ArBOVTeoaiHwFjDeu4Kqfq2qh9yXCwDrPDWmCse2S/Bsr991MIiRmMYokIkhBdjq9TrTLavO9cCn9RqRMSEqMSaSt28cGuwwTCPVIO9KEpErgHTgtGr23wjcCNCpU6cARmaMMY1fIFsM24COXq9T3bJyRGQkcD8wTlULqjqRqk5V1XRVTW/dunW9BGuMMU1VIBPDD0B3EekiIlHAJcAM7woiMgB4EScp7ApgbMYYY1wBSwyqWgxMAD4HVgLvqOovIvKwiIxzqz0JxAPvishPIjKjmtMZY1wrs/ZTUFwS7DBMIxLQMQZVnQnMrFD2oNf2yEDGY0xjkFdQzLEPfMb/u7g/5w6o6X4OY3xjTz4bE6L6pjSnZbNfp+t+d/HWGmob4ztLDMaEqLjoCJY8OJqHznGeEw3x+TBNA2KJwZgQ16NtQu2VjPGDJQZjGonv1+dw5ztL2e7OxGrMkbLEYEyIS4z5dZzh/R8zeWzmyiBGYxoDSwzGhLi+KYn88+LjPa8/XpbFul0HghiRCXWWGIwJcSLCeQNSy82d9Jtn5pJ7uCiIUZlQZonBmEYiPa0Vw7olAVBQXMrxf/mCVTv2BzkqE4osMRjTSISHCS9fNZjk+GhP2eRPV3GgoDiIUZlQZInBmEYkNiqchfeN4LQezuSSc1Zn0/ehz3nwo+WoPehgfGSJwZhGJjxMePy3x5Ur+/f8zXS5dyYrs6xrydTOEoMxjVCHFrFsfHwsC+8bUa78rKfn2h1LplaWGIxppESEtokxrH9sLOOO7+ApH/mPb/jtlHn85X+/sCHbkoSprEGu4GaMqTvhYcJTFznPOcxYuh2AH7fs48ct+8gvKq3U7WSMtRiMaQIiw8N4+pL+vHHDEK4c2pmxx7UDYPqiLSzZspdt7jQaZQPUJaU2UN2UWYvBmCZCRBjWLZlh3ZL5eNl2Zv68A4Dzpnxf7THd2sRz/cldOLVHa1JaxAYqVBNklhiMaYKG92zDuf078OFP22ust27XAe7978+e19cOS+NPY3oSExle3yGaIJJQv7c5PT1dMzIygh2GMSEt93ARqkpEeBjhIuw7XMijn6zk42VZleqeNyCF64Z1oU+HRMLCJAjRmrogIotVNb3KfZYYjDG1WZm1n7Oenlup/PIhnbhiaGe6tYknMtyGLEOJJQZjzFFbmbWfif/9maVb99VYLyoijKuGdmZg55a0TYymoKiUvIJi2jePoWPLZrSMiwpMwKZGlhiMMXUm91ARU75Zx6c/72DLnkNHfJ6oiDBO79Gaa4alkdIils5JcXUYpamNJQZjTL1RVQ4UFLNt32E+X76T1xduJjuvgLaJ0bRvHsvanXkcLCzx6VxJcVFER4SxPTefqIgwjktpzmk9WlOqSlFJKSN6taW4RGkWFU7rhGjaJsbU89U1XpYYjDFBp6qs2XmAguISMjbt5bPlO8g+UMDG3QeP+Jz9UptzSvdkCotLKSwu5Q+nd6Ndc0sWvrDEYIxpsFSVrXsOszMv37NM6fz1u1m2LZdmUeEkxETy1cpdFJeWsj77IB1bxbJ1T+3rWvdoG8+m3Ye4dlga2/YdZlTvtgzs1JLWCdF2uy2WGIwxjcy6XXlMmbOe1gnRxEdFMHP5Dr9mju3WJp6Nuw9ycrdkduTmM6p3W3q2T6C4RGkeG8lJ3ZKIjmjcycMSgzGmScg9XMS2vYcpKC5hQ/ZBtu49xC/b9zNrxU7aJESzK6/Ar/P1S23OssxchnZtRXGJM86xbtcBBnZuydjj2tO7fSLFpaUUFittEqNJiI6gdUI0Ig3/+Q5LDMYYAxQWl7I++wB7DhZSWFzKgo05fLlyF2lJcURFiGeakLrQNTmO4lJly55D9EttTlGJUlJaSlGJknOggJG92rJjfz7HtksAoKiklKJi5Zg2cRwuLCUuOpyk+CgSYyLp0CKWiDChVCE6IozwMCEsTIiLCqdFsyO7/dcSgzHG+Ci/qITl23IpKXXutgoPE6IiwogMD2P9rgMs3LiHT5Zl0bV1HJHhzof0T1v3kRATQV5+YJdR/U2/9jx/2cAjOramxGBzJRljjJeYyHDS01pVuW9wWisuOaET/7y4f5X784tKyNx7GFVFRNif7041EuYkkIhwYfWOPAqLS9mw+6BnfW5VZcGGPXRsFUtpqTJ37W7at4hh3rocwBkT2XeoiD0HC0ht2YySUqWkVGnZLLJefgeWGIwxpo7ERIbTrU18jXV6tkussvyGU7rWR0hHxCY3McYYU44lBmOMMeUENDGIyBgRWS0i60RkYhX7o0XkbXf/QhFJC2R8xhhjApgYRCQceB44C+gNXCoivStUux7Yq6rdgH8CfwtUfMYYYxyBbDGcAKxT1Q2qWgi8BYyvUGc88Jq7/R4wQkLhSRFjjGlEApkYUoCtXq8z3bIq66hqMZALJAUkOmOMMUCIDj6LyI0ikiEiGdnZ2cEOxxhjGpVAJoZtQEev16luWZV1RCQCaA7kVDyRqk5V1XRVTW/dunU9hWuMMU1TIB9w+wHoLiJdcBLAJcBlFerMAK4G5gMXAF9pLXN2LF68eLeIbD7CmJKB3Ud4bKiya24a7JqbhqO55s7V7QhYYlDVYhGZAHwOhAOvquovIvIwkKGqM4BXgP+IyDpgD07yqO28R9xkEJGM6uYKaazsmpsGu+amob6uOaBTYqjqTGBmhbIHvbbzgQsDGZMxxpjyQnLw2RhjTP1p6olharADCAK75qbBrrlpqJdrDvn1GIwxxtStpt5iMMYYU4ElBmOMMeU0icTQFGd19eGa7xCRFSKyTES+FJFq72kOFbVds1e980VERSTkb2305ZpF5CL3b/2LiLwZ6Bjrmg//tjuJyNcissT99z02GHHWFRF5VUR2icjyavaLiDzj/j6WiciRrfXpTVUb9Q/OMxPrga5AFLAU6F2hzh+BF9ztS4C3gx13AK75DKCZu/2HpnDNbr0E4FtgAZAe7LgD8HfuDiwBWrqv2wQ77gBc81TgD+52b2BTsOM+yms+FRgILK9m/1jgU0CAocDCo33PptBiaIqzutZ6zar6taoecl8uwJmiJJT58ncGeARnOvf8QAZXT3y55t8Bz6vqXgBV3RXgGOuaL9esQNn6mc2B7QGMr86p6rc4D/xWZzzwb3UsAFqISPujec+mkBia4qyuvlyzt+txvnGEslqv2W1id1TVTwIZWD3y5e/cA+ghIvNEZIGIjAlYdPXDl2ueBFwhIpk4D9TeEpjQgsbf/99rFdAnn03DIyJXAOnAacGOpT6JSBjwD+CaIIcSaBE43Umn47QKvxWR41R1XzCDqmeXAtNU9SkRORFnmp2+qloa7MBCRVNoMdTZrK4hxJdrRkRGAvcD41S1IECx1ZfarjkB6AvMEZFNOH2xM0J8ANqXv3MmMENVi1R1I7AGJ1GEKl+u+XrgHQBVnQ/E4Ew211j59P+7P5pCYvDM6ioiUTiDyzMq1Cmb1RV8nNW1gav1mkVkAPAiTlII9X5nqOWaVTVXVZNVNU1V03DGVcapakZwwq0Tvvzb/hCntYCIJON0LW0IYIx1zZdr3gKMABCRXjiJoTEv3DIDuMq9O2kokKuqWUdzwkbflaT1NKtrQ+bjNT8JxAPvuuPsW1R1XNCCPko+XnOj4uM1fw6MFpEVQAlwt6qGbGvYx2u+E3hJRG7HGYi+JpS/6InIdJzknuyOmzwERAKo6gs44yhjgXXAIeDao37PEP59GWOMqQdNoSvJGGOMHywxGGOMKccSgzHGmHIsMRhjjCnHEoMxxphyLDEY08CIyDQR+bi618bUN0sMxnhxP4TV/SkWkS0i8i8RaRns2IwJFEsMxlQ2G2gPpAE3AOcAU4IZkDGBZInBmMoKVHWHqmaq6hfA28Dosp0icq278E2+iKwRkdvdSfrK9jd3WxlZbp2VInKxuy9JRKaLSKaIHHYXzznqJ1WNqUuNfkoMY46GiHQFxgBF7uvfAQ/jTOW8GGdivpfc/c+563jMBFriTE2wBjgWZ74e3P/+iLMmxH5gJPCiiGxR1S8DdFnG1MgSgzGVjRGRAzhz8ZR9oN/h/vfPwD2q+p77eqOITMZZBfA5nA/6E4E+qrrSreOZtE5Vt+HMU1VmqogMx5kq2hKDaRAsMRhT2bfAjUAszgpoxwDPiEhrnOmNXxSRf3nVj8BZVhFgAJDllRTKEZFwYCJwMc5iKtE4S1TOqfvLMObIWGIwprJDqrrO3b5VRL7GaSmUJYObgO+P8Nx34cz+eRvwM3AAeAxoc+ThGlO3LDEYU7u/4Cx9OhVn/eBjVPXf1dRdArQXkV7VtBpOBv6nqv8BcMckegD76jxqY46QJQZjaqGqc9z1DB7AmQv/WRHZhzPIHAkMBFJU9XGccYKFwPvuegBrgG5AnKp+6L6+WEROBnbjDGJ3wUkoxjQIdruqMb55CmfJyFnAdcCVwFJgLs54xEYAd13hs4B5wOvASuBpnHEEgL8Ci3BaIN8CB4E3AnURxvjCFuoxxhhTjrUYjDHGlGOJwRhjTDmWGIwxxpRjicEYY0w5lhiMMcaUY4nBGGNMOZYYjDHGlGOJwRhjTDn/Pz7PiwixrasVAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAELCAYAAADKjLEqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5KElEQVR4nO2de5wdVZXvvyudB3RAkjQBIY8OIOqAeBF7EIRBHuoExIDKaLB5iRgJoiigA+bKVTRwnUFmkEEhOmEYujHiC6NmZFB05uIo0kHeTCRAEoIiMQgoQULCun/sqjnV1VWndp1TVeecnPX9fOpzqnbtqlpVp2r/9l77JaqKYRiGYWQxrtUGGIZhGJ2BCYZhGIbhhQmGYRiG4YUJhmEYhuGFCYZhGIbhxfhWG1AEO++8s86ZM6fVZhiGYXQUK1eu/L2qTveNv00Ixpw5cxgZGWm1GYZhGB2FiKzNE99cUoZhGIYXJhiGYRiGFyYYhmEYhhcmGIZhGIYXlQuGiMwVkVUislpELkjY/w8iclew/FpEnq7aRsMwDGMslQqGiPQAVwFHA/sAJ4rIPtE4qvoxVd1fVfcHrgS+XYYtw8MwZw6MG+d+h4fLuIphGMa2Q9UljAOB1ar6iKpuBpYBx9WJfyLwtaKNGB6GBQtg7VpQdb8LFphoGIZh1KNqwZgBPBbZXh+EjUFE+oE9gFtT9i8QkRERGdmwYUMuIxYtgk2bRodt2uTCDcMwjGTaudJ7PvBNVd2atFNVl6jqgKoOTJ/u3VERgHXr8oUbhmEY1QvG48CsyPbMICyJ+ZTgjgKYPTtfuGEYhlG9YNwB7C0ie4jIRJwoLI9HEpFXA1OBn5dhxOLF0Ns7Oqy314UbhmEYyVQqGKq6BTgbuBl4ELhRVe8XkYtFZF4k6nxgmZY0f+zgICxZAtOmue0ZM9z24GAZVzMMw9g2kG1hTu+BgQFtZPDB666D006Dhx+GPfcs3i7DMIx2RkRWquqAb/x2rvQunQkT3O+LL7bWDsMwjE6gqwVj4kT3a4JhGIaRTVcLRljC2Ly5tXYYhmF0AiYYWAnDMAzDh64WDHNJGYZh+NPVgmEuKcMwDH9MMLAShmEYhg9dLRjmkjIMw/CnqwXDXFKGYRj+mGBgJQzDMAwfulowzCVlGIbhT1cLhrmkDMMw/DHBwEoYhmEYPnS1YJhLyjAMw5+uFoybbnK/H/4wzJkDw8OttMYwDKO96VrBGB6Gj3yktr12LSxYYKJhGIaRRtcKxqJF8Pzzo8M2bXLhhmEYxli6VjDWrcsXbhiG0e10rWDMnp0v3DAMo9upXDBEZK6IrBKR1SJyQUqcd4vIAyJyv4jcUIYdixdDb+/osN5eF24YhmGMZXyVFxORHuAq4C3AeuAOEVmuqg9E4uwNXAgcoqp/EJFdyrBlcND9nnwyqEJ/vxOLMNwwDMMYTdUljAOB1ar6iKpuBpYBx8XifAC4SlX/AKCqT5ZlzOAgTJ4MH/sYrFljYmEYhlGPqgVjBvBYZHt9EBbllcArReRnIvILEZlbpkE9PbB1a5lXMAzD2Dao1CXlyXhgb+BwYCbwnyKyn6o+HY0kIguABQCzm6ipNsEwDMPwo+oSxuPArMj2zCAsynpguaq+qKqPAr/GCcgoVHWJqg6o6sD06dMbNmj8eBMMwzAMH6oWjDuAvUVkDxGZCMwHlsfi3IQrXSAiO+NcVI+UZVBPD2zZUtbZDcMwth0qFQxV3QKcDdwMPAjcqKr3i8jFIjIviHYzsFFEHgB+AnxcVTeWZZO5pAzDMPyovA5DVVcAK2JhF0XWFTg3WErHBMMwDMOPru3pHTJ+vLmkDMMwfOh6wbAShmEYhh8mGCYYhmEYXphgmGAYhmF40fWCYXUYhmEYfnS9YFgJwzAMww8TDBMMwzAML7peMGxoEMMwDD+6XjBsaBDDMAw/TDDMJWUYhuGFCYYJhmEYhhddLxhWh2EYhuFH1wuG1WEYhmH4YYJhLinDMAwvTDBMMAzDMLzoesGwOgzDMAw/ul4wrA7DMAzDDxMMc0kZhmF4YYJhgmEYhuFF1wuG1WEYhmH4UblgiMhcEVklIqtF5IKE/aeJyAYRuStYzijTHqvDMAzD8KNSwRCRHuAq4GhgH+BEEdknIerXVXX/YPlqWfYMD8OyZfDb38KcOW7bMAzDSKbqEsaBwGpVfURVNwPLgOMqtgFw4rBgAfzpT2577Vq3baJhGIaRTNWCMQN4LLK9PgiL8y4RuUdEvikis8owZNEi2LRpdNimTS7cMAzDGEs7Vnp/D5ijqq8FbgGuS4okIgtEZERERjZs2JD7IuvW5Qs3DMPodqoWjMeBaIlhZhD2P6jqRlV9Idj8KvD6pBOp6hJVHVDVgenTp+c2ZPbsfOGGYRjdTtWCcQewt4jsISITgfnA8mgEEdktsjkPeLAMQxYvht7e0WG9vS7cMAzDGMv4Ki+mqltE5GzgZqAHWKqq94vIxcCIqi4HPiIi84AtwFPAaWXYMjjofs86C559Fvr7nViE4YZhGMZoRFVbbUPTDAwM6MjISEPHXnghXH45vPBCdlzDMIxtCRFZqaoDvvG9XVIi8joR+baI/F5EtojIAUH4JSIytxFj24Fx4+Cll1pthWEYRvvjJRgicijwc+DVwA2x414CzizetGowwTAMw/DDt4Txf3H1DvsC58b23QkcUKRRVSJigmEYhuGDb6X3AcA7VVVFJF7p8Xsgf7vWNmFcIJmqTjwMwzCMZHxLGH8GelP27QY8U4w51RMKxpw5bt3GlDIMw0jGVzBuAz4aDB4YEpY03g/cWqhVFXLvve533TpXyrAxpQzDMJLxFYxP4dxSdwfrCpwqIj8BDgI+U4555XPLLWPDbEwpwzCMsXgJhqreDRwG/A5YBAhwdrD7Taq6qhzzyueZFGeajSllGIYxGu+e3qp6J3CUiGwHTAOeVtVNGYe1PVOmwNNPjw23MaUMwzBGk3ssKVX9s6r+ZlsQC4C5CV0ObUwpwzCMsXiVMETkoowoqqqfLcCeyhkYcLPuTZ4Mzz0HU6fClVfamFKGYRhxfF1Sn66zL2wt1ZGCEfa9OP541zLq4otNLAzDMJLwrfQeF1+AnXEjyd4HvKJEG0tlXNUDvBuGYXQoDQ9vrqpPAf8qIn3AVcAxhVlVIdGe3tFfwzAMYzRF5K/DJrcdSVwwbFwpwzCMZIoQjGOB/JNqtwlhHYaVMAzDMOrj20pqaULwROA1wH7A/ynSqCqJ12GYYBiGYSTjW4dxJLXWUCF/BtYC/whcV6BNlWJ1GIZhGH54CYaqzinZjpZhgmEYhuFH1zcqNcEwDMPwI7WEISK5Wj6p6n/6xAvm/74C6AG+qqr/NyXeu4BvAn+pqiN5bMlDfNIkEwzDMIxk6rmkfsrYeoskJIjXkxnRzadxFfAWYD1wh4gsV9UHYvF2BM4Bbve4flNYpbdhGIYf9QTjiBKudyCwWlUfARCRZcBxwAOxeJ8FPg98vAQbRmEuKcMwDD9SBUNV/6OE680AHotsrwfeEI0gIgcAs1T1ByJigmEYhtEmtFWlt4iMAy4HzvOIu0BERkRkZMOGxvsNmmAYhmH44T2WlIjsC5wBvArYLrZbVfUoj9M8DsyKbM8MwkJ2xHUG/Km42uiXA8tFZF684ltVlwBLAAYGBhpO5q2nt2EYhh++Pb3fAPwHsAbYG7gHmArMxrmVVnte7w5gbxHZAycU84H3hjtV9RncKLjhdX8KnF9mK6l4pbeNJWUYhpGMr0vqEuDbwL64VlHvDzrzvRnXOupzPidR1S24ucBvBh4EblTV+0XkYhGZl9P2QjCXlGEYhh++LqnXAqdSa2bbA6Cqt4rI54BLiVVep6GqK4AVsbDEGf1U9XBP+xrGBMMwDMMP3xLGROA5VX0JeArYLbJvFa7eoSOxOgzDMAw/fAVjNa5JLLj6i9NFZFzQqul9wBNlGFcF1nHPMAzDD1+X1PeAw4EbcPUZPwCeBbYCOwAfKcO4KjCXlGEYhh++o9V+OrL+IxE5CHgX0Av8UFX/vRzzyscEwzAMw4+G5vRW1V8BvyrYlpZgLinDMAw/vOowROQ7InK8iEwo26CqsUpvwzAMP3wrvV+F64fxhIh8KXBJbROYS8owDMMPL8FQ1X2AvwSuB94J/ExEHhKRi0RkzzINLBsTDMMwDD+8Bx9U1ZWq+lFc89q344b5+FvgIRH5f+WYVz4mGIZhGH7kHq1WVbeq6gpVfS/wDuA3wBsLt6wiQsEIx5AywTAMw0gmdyupwAV1MjAI7AX8FvhCwXZVRljpbYJhGIZRH9/RaqcC78EJxUHAJuA7wFnAj1U7N5kNSxhbt7rfzr0TwzCMcvEtYTyBG3DwVtwghN9W1U2lWVUhJhiGYRh++ArGIuAGVf1Nmca0glAwtmxxvyYYhmEYyfgODXJZ2Ya0irAOIyxh2ARKhmEYybTVnN6tIO6SMsEwDMNIxgTDBMMwDMMLE4xYHUYoHIZhGMZoTDCshGEYhuFF1wtGvNLbShiGYRjJ+A5vfpyIvC+y3S8iPxeRP4rIN0VkB98LishcEVklIqtF5IKE/WeKyL0icpeI3CYi+/ieuxGshGEYhuGHbwnjfwPTI9uXAzOBJcBhwKd9TiIiPcBVwNHAPsCJCYJwg6rup6r7A38XXKs04oJhJQzDMIxkfAVjL+AeABHZHjgGOFdVzwM+iRuE0IcDgdWq+oiqbgaWAcdFI6jqs5HNyUCpXenild5WwjAMw0jGt6f3dsDzwfobg+PCebxXAbt7nmcG8Fhkez3whngkEfkQcC4wETgy6UQisgBYADB79mzPy4/FShiGYRh++JYw1gCHBuvHAStV9ZlgexfgmaSDGkVVr1LVvXDzbfzvlDhLVHVAVQemT5+eFMUL6+ltGIbhh69gXAN8WkRGcCPU/nNk38HAA57neRyYFdmeGYSlsQw43vPcDWEljPIZHoY5c9yznjPHbRuG0Xn4jiV1hYj8Hje0+RdV9V8ju3cErvW83h3A3iKyB04o5gPvjUYQkb1V9aFg823AQ5SItZIql+FhWLAANgVjG69d67YBBgdbZ5dhGPmRqqeyEJFjgH/EDZe+VFUXi8jFwIiqLheRK4A3Ay8CfwDOVtX7651zYGBAR0ZGGrLn0Udhzz1h0iR44QUX1t8PixdbglYEc+Y4kYjT3w9r1lRtjWEYUURkpaoO+Mb3nUDplcAUVf1lsL09cBHwGuBmVf0n3wuq6gpgRSzsosj6Ob7nKoLvftf9hmIBlgsuknXr8oUbhtG++NZh/BNwQmR7MXAernXUPwStmjqO4WH45CeT923aBIsWVWvPtkhaA7YmGrYZhtEifAXjfwE/AxCRccApwN+q6uuBzxE0b+00Fi2C559P32+54OZZvBh6e0eH9fa6cMMwOgtfwdgJ2Bisvw6YCnwz2P4psGexZlVDliBYLrh5BgdhyZLadn+/2+50V1/RLb+sJZnRCfgKxu+AVwTrbwUeVtWwA94OwJaiDauCeoJgueDiiIrDmjXbhlgsWODqulRrdV6NJvJFn88wysJXMJYDl4rIZbi6i29E9u0HPFK0YVWQ5C4B6OurPhdsOczOYdGiWjPhkE2b4NRTG/v/0s5ndWhGu+E7NMgFuOFB/honHpdE9s2jNkxIRxEKwimn1Ppf/MVfwAO+3RALwvoqdBZprsywL0/e/89akhmdglcJQ1WfU9UPBKPInq6qz0X2vVFVLyzPxPIZF3kKrei4ZznMzsKnbivP/2ctyYxOIdcESiIyTUTeJiInB7/TyjKsCsKc/ZZIDcxDD412J1ThKrIcZmeR5sqM4/v/WUsyh7llOwBV9VpwzWefB16KLM8Dn/U9R1nL61//em2E/n5VV804eunpURVR7etTnThx9L7eXtWhoYYul9uO/v5ir9NKwnvaVhgaUp0wwd3TuHHN/39Ll44+ruh3rN0ZGnLfVtnfmjEa3Agb/jrgFQk+GgjEV4A3Aa8Kfr8CbAU+kueiRS+NCoZI8oeetRSdkHfDx7KtCYaq6r77unu69NLm/78//nHbfEa+dEOmqR3JKxi+LqkzgSvU1WP8h6quCn4/AHwRN4Jtx9GojzivqyirqB32VdhxR7c9dWpn9VXoVleCBsOwHXus+7922slt77RT/v+v20dJNrdsZ+ArGHOAH6Ts+0Gwv+Pw9UXHySM0vm3sBwdh4UK3/vGPd5ZYdGsfglAwRNz/NW+e237mGVfhnecZdLtgWMV/Z+ArGBtxAw0msS+1XuAdRZiz32EH/2PyVkbmaQG1/fbu989/9j9/mLsXgfHj3W+VufxubuEVCsbWre55f/3rtX15hbPbBcMq/jsDX8H4DvDZoHXUeAARGS8iJwIXA98qy8CyGRx0/TDSmDChtt7IsBZ5itqhYNQb3ypKNHcPY/sBVCEa3exKCAXjpZecQG7ePHp/HuHs9nlYwsxb+L3tumtnuWW7BV/BuBC4C7gOeF5EfodrITUM3A2kjPnaGYyv033xjW+srTcyrEWeovY997jfv/97v1JCUu4+pOxcfliyCRPNOFmuhG2h3iNawmhWOLu9hAHu2+rvd+tPPpnfrdcs28I7WTq+teOAAMcCn8e1jvo8cAzBJEytXBptJRVy3nl+raMawbcFVLSZZjTewoWupYjI2OaWWa28RBp9IvnvKev+os8w6XgRd69J10q7/0bsLupcqqp77+1sv/325lv5rFvX3a2kVN3/EW+iXFVrwW5oqZgEZTSrbfelWcH427/1E4xGX56hIdXtt3fnmD49+TxpCU5cFKIvcdoxZTb/zbpm2v1FE8N69xo9tsiPuIwE4RWvcOf5r/9y52mmz86jjxYnGEULY1W0smlttzbrNcFogEWL/ASjmZdn3jx3jptuSt6fp09IaEe9nL5vYuWbuGSVKsLle99LPj6aGNa71+gzLvIjLiNB2Gsvd47bbnPbp546+rx5EurVq4sRjE7OKae9F2WVlNvl2q0kr2Ck1mGIyEsistVz6cjhzUOiFdv1aKYiV8T9plVu5mk+GNoRn2sixLdyPk+T2Hr1JVFuvTU7Tr17jT7jIivUy6icV3W/Yf3D61/vfo88Mn99V1F1GJ3caq3qprXROotxKSmhNesdTb1K74tzLJ8t18xyqVfpHaWZlyd8IdMShsWLG7MjKVHyTazyJC5hS6wsvvSl7MrCek0lo/dWZAJSRmIUF4xmWjrF34tGK2A7udXa4sXQ0zM6rKymtfHMUtJ3ac16E8hTHCliAeYCq4DVwAUJ+88FHgDuAX4M9Geds1mX1Oc/7+cKaqZY/653uXPccEN6nGOPbcyOpGK0j0vEtxg+NNSYyyxk69ax7pa/+quxx8VdJ2kNARpxtS1cWLyrZs4cd54f/chtX3652z7iiPznuvfe0f9vo7Z2ui/+0ENH21yWKy2rLm733TvDjdcstHMdBtADPIyb0nUirknuPrE4RwC9wfpC4OtZ521WML7whexEsKenqUvou9/tzrN0aXqcc891cY4/Pv2F7usbe1yazVmJTL2PJtpiKevjyhKcF14YKxhXXDH6mF12SbZ1/vz8CUhagrtwoeqkSfWvl4fwudx8s9u+7DK3ffjh+c91112j77PRRL+T6zBUVU85xdn8mc+Ue52sDNCqVeVev13IKxi5hjcvgAOB1ar6iKpuBpYBx0UjqOpPVDV0lPwCmFm2UT6uoIkTk8N9XQehS+qFF9KvEQ6zvmVLes/XK67ItjUky3ddb2iUL38ZzgpGCMvrzoi7eZKK+y++OHr72muT3WgDA+733HObd7WtWAGHHOK2h4eb7xTm8jRjXVJPPJHfnRR9Rs24lbaVOdTL7siY5ooM04L4+2k4qhaMGcBjke31QVga7wf+LWmHiCwQkRERGdmwYUNTRvlUeicl9HkqjdMEIyo4S5e6sK1bax/+1KkubPz4xj78eonM4CBceWX6/jDhyePnnzhxrN93S0KTiHhYWgKR1VggiXoJbni+MLFvhjTB+PWv84+tFRWMtOc9bVrtXdl5Z7ckiVInz6EePsOyOzKmZcimT3frZQpGJ3cQrFowvBGRk4AB4O+T9qvqElUdUNWB6eG/3CA+JYykBCtPpXFUMIaH3ccuAiedVEtc/vQnF+exQFIHB+FTn3Lre+zR2IcfTWSSXs53vjP92PCjXby4NmxJFqecMtZOH8FIS8DD55Ynga9XwR0KRhGE70Tab4hPK6VoAplW8nvmmdq7snGjW7JEqdOGHKlKMAYH4ZpratthSWxaMCVcWYLR6YN1Vi0YjwOzItszg7BRiMibgUXAPFWt48QpBp8SRrTZXZhDSGs5lJTDDY//5S/hfe9zH3saDz1UWw8T1kY+oAkT4I9/rP9yZn0Yc+a434sv9rtm2LQ0SpJgxK+bJRh57t9nILuTTsrOqfvi00oqy50Uvb/BQTj11LFxkp5jSJoo1TumHq3KBRfR4gz87H/3u2vrYUksfN/i44IVRSc3e4bqBeMOYG8R2UNEJgLzgeXRCCLyOuAanFg8WYVRPiWMcK6K+IB/SSTlcMMP4JZbshPpqNuqGcHYujV5QLxzznHrw8PwutfVP8fatU7gfJsXJn1oSbbnLWHkSUBCd14oGn19NXfeE0+4sCefrJ9T90lw0lxSSWS59eLPaMWKrLscS5IoNSIYrcwFF1HC8LU/6Rrh+1ZWCaOTmz1DxYKhqluAs4GbgQeBG1X1fhG5WESC2QT4e2AH4BsicpeILE85XWH84hfZccIh0LM6sMVzsmHCMzTktp99NvtakybV1sMXt5EPPy0B27jRVWgvWACPjynfjeXFF+Hpp/2umSQY3/hGbV3E5ejvvtvP1kZcUuDE4YQT3Ppll9XcZKtX1z8uFFSfBCe0Kc0VFeLTnj+eeDWSgCSJUiPvTStzwUUIhq/9rRCMTp/3o/I6DFVdoaqvVNW9VHVxEHaRqi4P1t+sqruq6v7BMq/+GZtjeBi+8pXseOGLVO9D3m230RXTPqWRJGZG2oWFH3zRL/CSJX49t/MSt3N4GM47b3TYxo1jc9BpgtBIpXdI2AksmjD4zDWycaNfgpNWwnjZy2pxfFspxROvRhKQJFFqRDBamQsuwiXla3/SsylbMDp93o+2rfSuiqR5DJJYv97ljOvldP/930eLxamn5kuUw6a7YcsoqL3U9ZrjNkKRlYqhuw7gk58c7cJZtCj544snCEWXMCBZMLbbLv95QuIJTlwwwu3wGrNm+bdSitpYr34sjb6+5Os0IhitzAUXUcLwtb8VJYxOb/bc9YLhm2sK/d31+Ku/qvm/FyzI/9IffbT7jX7k4RwZzzzTXk3woiJx8MGj90VdOL7PN0swGklAkgTjla+sf4yIS3yTiCc4oUB89KPOzrCPTJgByWNzNG5esZg4Mb1/TpZgJNXVVJULTrp2EYLha3/0GqENTz3ltstsVpun2XPbNcHN08uvXZdmenrn7cWctUyc6HpjN3JsOAT6fvs524aGVMePHx2n3lwTZSyTJ48dthtU3/zm2voOOyQf29/v/3yXLUseOferX3X73/e+/P/tWWe5Y085pXbe7bbLtiU6HH2955523+Hz2nVXf1uXL2/8Pzr77LHnC/etXZt8vaGh5Pc0vM/osCy77VZ8T/G0Humvfa1b/+AHmz9/eN6eHvfb1+eW8P0Ke5VHl3A+jnpD+OS1I2k06PB6WceW3Wufdh4apKylGcEYGqoNF9Euy5Qp9RPa+BARZdrS36961VVjw08/PfvYcH6LuOglLWedlfxxnHGGWz/ttPz/7Yc/7I6Nj0eVdb+qqkuWjA5L+kjjk/3El+nT/W296ab655o8OX1fPcF4+OHR4WlCkfQM9t3Xbd97r/99+JL2foeCfsYZ+c8ZT5x93s+0ff/yL83fY70EP9yuRxXjguUVjK53SQ0OwlveMjrMd7jzRklzeYQ8/XR9t0SVTfDWrYO//uux4dF5x8MWZHFmz3bP95MeE/j+678mVzR/+9tuvZlKb1/3goh77nPm1I4RSXYbRN0naTTqkoqz447wjnek71+2LH1f1CUVukqzXKvh+6VaP14zpL3DYaOEvC6ppKa0WdS7v6TGG3ldQ822NmvHJrhdLxjDw66yOkrZ48hEE9tGCHujNkvaOFJRZs2CG28cGx69h6TOelGf8eGHZ18n7OUeJ/QpJyXOWR9xfKjsLMIEZO1aOP/89HOEiVMWf/iDv8+5XgJ50EH1E7d6AhAVDN85TeLvV5G940PSKqbDJuXx/zvpv46GnXJKsa3+wjQgHJUhOiKDb7+UtIQ9Kmb1zpH2nbe0CW6e4ki7Lu1Uh1HFMnFizUXy0kvJcaZOrX+OmTNVr702+1oLFiS77EJfM6iefPLofXEXzs03N36v06a53/e+d/T/5uPf/cQninnWzbwzvj7nr31t7LGhK+3MM1VPPDH9GjvvPPZ84b67766F+Q5RH75ff/EXbrsMl1RaPVF4zZNOGj0lcNz2CROS69aaXUI34xVXZM8ymeUayuMWi38zSUP7R/+bosDqMPKRZ56HdlrCl/XFF5P3Dw7Wrzu48krVZ5/Nvs6sWcnhUREJh24Hl7DF+d73sq8zeXL6BxK956z5zKMf8YUXurA8dRjxZbvtmn9nfIclj/9/YR3CGWfUF4yzzhp7vnDfypW1sDxC19en+upXu/VLLilnjvCrrx773x52mNs++GC/KYGbWeINIPr7XUYq3A4ry9OWetO3+tQVxZdwCP56/1PS9AbNYIKRkyJLGD6Vu0Ut4cv65z8n77/sMtWjjqp/vE/Ftc8SzlcObqKoON/6VvY5Tj5ZdWAgO96ECX6VtiKqL3uZ2z7uuNq+eK42a5k8ufl3JmlCqngCfN11o4855JDa+zR5supBB6WfPykBD/fdfvvo6+ZJhHfbzf3GE9Z6paakiavSxOaJJ2rnCznkkFpYWd9O+I5cckltu5FvNy0jkPc5x9+VPO9Ss5hg5CTpz83KWaTFrZdAl/HCq7oJmZL2v+c9tRZGzSw+uem3vrW2Pm/e2Gec5G6JuxOKSiCy7H372/3OEyaSO+6Y/M408l+Fx8ZLPBMmqH7gA/XfwXrv5PXXj7Ux3BeKJjihXbjQ3+56iWhSYumTUIrUJud6/HEXtv32tXMcfHAx70HW8tJLqnfe2fjxSbNDhsKY9l/lSVfyPPdmMMFogKivFFR32sn/D4wmfEUk0L5L+NGluYymTHFNUauw5VWvqq3PnZv+XKPLfvsVb0eR7sXjj689xyR83Q1xH3XacfWazWYt9QQjvhTl90/K6fqWvMLm1mvXuu2oYLzhDbWwMt+F2bNVL764sXP39fnVNxS9lDFzoglGgwwNNf8xJc1TXdYS5jTqfRiDg9XYEn1uRx5Ze571cpvTpxdrQxG5t+iyyy7ud9q02v1EXStnnjn2mCy3Rllulg9+cKzbJ8/xaZ0Z85Yw8s77/sgjbj0qGKFb8oAD8t1DIwm2TyfOpCVOox1140u959fTU840uyYYDdCMzzG6lO13jb9cqqMr6Vppz7a2hB/v9OnJ70dSC58jjmi93VHbfZeoS9HnHGk53Tx1OyKqDz1Ue5YhoVAce6xfQhyK2pFHVvc84xR1naOOGvuehUI4Y0ZTSVwqeQWj6/thgH/79CzKGP01jbAtdr1OQEXY4zvTXqvJ2+cii513dr8bNrg2+PFnGe9Lowo/+UmxNjSKar748fG1RNLPIeLGDlu0aGz/l3pzxMeZPXv0SMzhDJR33unCHnvMjY8V/1+jE5n198MRR7j1W2/1u24j5H2ejbJ69eiBCWfOhLe+1a23yxzjJhgU13OyqsQ12imuXg/gIrj0Uthpp3KvUQRFjr673Xaw6675jmm2M2Y7US+BVHWJc1IntnAk1nDU5TTC9zf8z7ZsGdv5MBx0M5zxMSQ62dmaNbUJscpkXCyVDOd0CYUya+QGX9atGz2iwMqVtfv3GZa/CkwwSO852d/vPgrf3GsVicaUKU6YTj7ZvUzRyYnK4O1vhw9/uJzevu3KMcfAffe12orqWLUqX/y4oESHuxgchP33r398OJx3vZF0VV3J7uGHR4fHpyIo8n/af/+x4tDbmzwj58aNcPrpTjSuuCJbJH2Ip0NbtsBzz7n1dhEMb99VOy9l1GFE/bRhJ7VmW25U4V/dVq7V7naX3eemE//XsMK9XtPYvr5aXUfW4I1Zi2rxzyLaeGLWLHc/9ewMO9J9+cvNXztsfRVuX3HF2Mr8ceNqLSSLAKv0boy0YYhVay9MfAgMWzpjKbpFFuRret1NS2+v6t57u/WyR4EeGipXWJ991n3/PnGjjU/C4WwaWXxbexUlGnkFQ9wxnc3AwICOjIyUcu7hYVc0Bjdq6B//WMplOore3mor+Jtl+nRXeV0UM2bAb37jPt12pF6ldRXnnzTJzRD5yU/CJZeUZ0dvr/tv80445cvGjW4AwJ6efKMlT5hQfiW1SHPT2NbOIytVdcA3vtVh1CE+KqmJheOEE8aG+baOaQVFigXAkUe2d51O2bZliVE4nfCb3lSuLZs2uRGByyJM9NOG7886rkxUXcV71TPxVS4YIjJXRFaJyGoRuSBh/2EicqeIbBGRhKSpOopqbrutkSQO8+bB7rtXb0sruOGGYnJ3ZVHPtiIS8P7++vvDOc03by6/FPbss+Wdu1HBqIqNG93z9R1uvQgqFQwR6QGuAo4G9gFOFJF9YtHWAacBN1RpWxKtnKiknUkrTTz5ZLV2tIoim/BWTbMJuM/c3mEflniLpjIos8l3dBKtdifPxEzNUHUJ40Bgtao+oqqbgWXAcdEIqrpGVe8BWp6Ha+lEJW3M5Mljw9asqd9M0hhLvAlnuzN5cq1JbD3Wr3e/ZQtGby8cdVR55z/0UPcfVdHXA5wwNdM8t4oMbtWv7Azgscj2+iAsNyKyQERGRGRkQ9FO6oA8PVfLpLcX9omXw0rANyf12c+ODbvjjuaundV2f1vkgx8spv1+Vai6/j9hCSKLaK/lkBkNfe3p53/Na+rHaeb5hg0bGilRNloq+ad/auw4qCaD22F5nBqqukRVB1R1YPr06aVcI+y5WlRPzjxEOwtefTX87nflX1O1cYFsxk0zYUJy56hm6AQ3wpe+BEuXZtcJtAubNrl3JGtO8JCkoVLCjmhFMDgId99dP87SpcVdz5dJkxrL4M2e7TrKNkqWq7AIqhaMx4FZke2ZQVjbMjhYfaXXxIlw3XW17ZNO8v9Im2H33Z1AFpl4H3lkdpyZM51oFEm7NnmNMzjo3HmdIhrN8vTTxZ1reBh+8IPizlcURxzh/tM8jBvnEvzoaBF5vsO+vmxXYRFULRh3AHuLyB4iMhGYDyyv2IbcVF35vXkznHNObbuq3PL557uXbt99izvnpEnZcXbZpf7HUbSYFE0RGQprYJGfc87JrjeLNouvih/+MH9JKvzGo4Jx2GG1fVlejne/O9/1GqVSwVDVLcDZwM3Ag8CNqnq/iFwsIvMAROQvRWQ98DfANSJyf5U2JtGKyu94iaIKt9i73uV+G/H7po23dcst2ceOG5csCqGvPCtRiB9btTtq0iTXwasZrIFFfnxK3Z3SLH7rVidu3/lOLSys77nvvuxMyXXXVdQXI0+38HZdihgapB7NzJcRnSKz0SW0oZlZvXwmh3r8cXetcF7lPMtee9WGVsk75tYhhyTPyeA7Mc3ll6vusENtuxVjXjUyH0NR75gt284SHbcq/I52393v2Eamb8XmwyiesPK7v9/lXvv74W1v8zv2vPNqf2keP3W8RDE4CNde25ivu6/Pr/Lvu991v42UMMJRRc88M3/z2p6e5D4cTz3lfrNKDF/4Qq34Du5ZV81ttzV3/OAgXHPN6LBOqLg3iiXa6TJ0T/3mN37HVuLWzKMu7bqUXcJIIpzCM2vZbrvaQIZJucgJE8ZOLzphwuhRK6PkGXAtPohiVvyZM128uXMbzyHlyd2HcQ8/vH6pxGcQuyLnVM473Wujo64mUdQ92OKWbiq1VVHC8I7YzksrBCPv/MUhSaPiRoUkOsF8eHyUPNNghh9M/HxpSzjt67x55b/cfX21hDlrbuUixSBrCedO9k1omrEtaZrTqu5zW10mTBjtysw7v3mnLmnT5mZhglERL3+5/58ZJsT1OP10F/crX6mFhcdHacQ/HwpTVrxZs9w1TjihvBf7mGPa218/bZp7BqGwZ8Xv6/Ova0k6Nk6r77+TlzCz9cILtbBueKa77daYWLhnY3UYlfChD/nH9WkBEzY/zZpZq5HWNOHgZFmEPbijTWHT/Oh5/evh9LX77OM/qGMrhs4IOy6G/SOyhp7YuNENgNdI09+NG+u3bGn35sTtxg47uP8t2kQ7q+WQT7PvdmDixPROtWefXU0fDOjgnt7tRlriJuLXA/PRR93vhz9cf7jiRoYr6enxS6AvushdN1rpPWNGraI9bDrb3w/XX5/vJQ0r8C67zH/+glZU+qrW1oeH4cc/zj7mxRcbH4Ii2t8mzskn1xpa9PV13thTjdDXN/qe8xBW+kafU9aAfHkyfq0m7Ru+8soKjchTHGnXpWqX1NBQtt89uvicLz7lZ9RlkxTfty4jr+unt3dsE9F45XnaMxAZ3by1HZa8LrwpU2r3mLe+KL5MnuwXL61hwtKlo595p06Rm/f/Ct+vvO9utK7Q9///znfKvZ+yp/INl0bB6jDKJ09CsvvuzZ8vjax6idCnmzfhS2qVFK9USztnX9/YD71VCV3e1k7hMSHN2j17tt/zT0roQPX66xt/7zp1CZ9F3nudODFZeLPql8rM4PT1qZ5/fjXPzeow2pg87Z3PP7/Y80XJ8r+GbqC8bqxwxrQo8fH202x+6qmxfVZU/a/twxe/CENDtWuk0ciAiNFjmu19/dhjtbqQoaH0eGnPMl6H0S6jJ5dJ6L7N+01MmFBzkUbduVm9wf/0p3zXycMOOyS/nzvuWFsP6/aapYq5MAC8laWdl3YpYfT1jd23++7Z6t9oCeO7383OeYQ5tqGhxlvzhEu0tVeazUltwYvOGc+cOfqZ5i1J9PSkP4tx42rnrde7vq+v1jQ67VxhE92QadOyn1k0/FvfGvss8zQTrefSef/7x16vHZbQ/dnIOxNvol7GkrfUmRR/0qTiWyL6tMRMAnNJlU/SSxm6bOrty3u+cD2NT3wi/4sU7QfS1+c3ZEj0Y/Z5Bj7316y7x7d/Sfz+QtdFvYQlWmeTJgZZzyLJzuuvr78/fi/Llyf/776JaTThDUU1dMFcfXU+8amXQSja5djbq7pw4dhnmlUf0N9fjduuiGuEHVV32qk4mxrBBKMikjrgqebLedc738KFo49NqnT26QGd57r1cupJYpD2DPLeX7MfSb0SX7yEEPaij9oEYxO98H7TEsMkIU57fmmVsUnPLHrcihXpz9InF530f5x5ptt36qn5cuJJmYvwGZWRSEdLGuGzOuqo7OOKEq96GYUiSzHHH59/pID4Pcbrb/JggtFifBOYevjk3n0+0ry9P+t9bI2+kPWIPpt6rp16H45q+vPyKR2o1hf5tH1xd1O95xe1M57wRInn+F/2svTn7uNiTMosfOhDbt/UqfmeNdR6UcfFrgjxz/pehoZqpaN6z7lZtyvUGovU+waLuueddvKveI+6l+PvZVaGLQ0TjBbTaAkj7zmyclJJCVoVtuchPH9I3txh1pArvuJdL56vuynr+WUlQGn1JePHZ5fcfBNdVdWPfCT7udYrbcbfhbLqDKK94PNco14rvbBkW284l/h/klaCrrrFWvxdGxoaO/5aI8ODmGC0mEbqMOL4JHRZOalGKsGKsD3PteIJar2PMM1lVA9fAcyK5+tuqvf8sq5R796ThhBp5D5VVT/2MbcvrYQRHuMrts0mnGnXid5znmuEIl/PVRqvx0sqNWVRL3MTni9vHWF86elJt6uozJ0JRhuQx7efhM/L0Ig7ogrbfa+RlLAmVXQmJS6+dvkKoE+8PHUZSc8v6/is0lXe+4TkZxT2C5g/v/49+yZIzdQZ1Ds2+lzzXCNLXIuiXr1ZlEZbJ2ZliIpwfauqCca2QDMJmM/L1mqyXDf1cpR5hdBXALPiNZuja6aEkSUYUfuTnmeUsGXdpZfWv2dfsW20hCHiMgg+zzXPNaoSjLyl8az3OmyS75tRsxJGE8u2JhiqjSdgjdRdVI1P7qioHFRRNOuu86nDaDYR9LExOnR93pZtSXHz1C8kuVh8bM5zjSrfj0ZK40W5fYs6jwlGl1BlfUPRNJOrLKsC3odm3XVZxye1vIk2A87Cpy4mXuFbxDvj07TWJ/edJUzROL4t4NqRoty+RZzHBKOLqKK+oQwazVV2iiA2QzP/aVaprGwRTisJRCcFK4pufT+Kpu0FA5gLrAJWAxck7J8EfD3YfzswJ+uc3SoYnUwjuUpLDOqTJQhVuPmq/M/s/WievIIh7phqEJEe4NfAW4D1wB3Aiar6QCTOWcBrVfVMEZkPvENV31PvvAMDAzoyMlKi5YbR/gwPu4myovMm9Pa6wSAHB908K0lzkfT3uwESje5DRFaq6oBv/KpHqz0QWK2qj6jqZmAZcFwsznHAdcH6N4GjRFoxlY5hdBaDg2NHCg7FApJHu+3t9ZvgyzCgesGYATwW2V4fhCXGUdUtwDPAmLm3RGSBiIyIyMiGDRtKMtcwOotwOPWXXnK/0VkRswTFMLIYnx2lPVHVJcAScC6pFptjGB3B4KAJhNE4VZcwHgdmRbZnBmGJcURkPLATkDENimEYhlE2VQvGHcDeIrKHiEwE5gPLY3GWA6cG6ycAt2qVNfOGYRhGIpW6pFR1i4icDdwM9ABLVfV+EbkY17xrOfDPwPUishp4CicqhmEYRoupvA5DVVcAK2JhF0XW/wz8TdV2GYZhGPWp2iVlGIZhdCiVdtwrCxHZACR0SfJiZ+D3BZpTBWZzNZjN1dGJdm8LNver6nTfg7cJwWgGERnJ09OxHTCbq8Fsro5OtLsbbTaXlGEYhuGFCYZhGIbhhQlG0Fu8wzCbq8Fsro5OtLvrbO76OgzDMAzDDythGIZhGF6YYBiGYRhedK1giMhcEVklIqtF5IJW2xNFRJaKyJMicl8kbJqI3CIiDwW/U4NwEZEvBvdxj4gc0AJ7Z4nIT0TkARG5X0TOaXebAzu2E5Ffisjdgd2fCcL3EJHbA/u+Hox7hohMCrZXB/vntMLuwJYeEfmViHy/E2wWkTUicq+I3CUiI0FYu78fU0TkmyLy3yLyoIgc3M42i8irgucbLs+KyEcLtTnP9HzbyoIbx+phYE9gInA3sE+r7YrYdxhwAHBfJOzvCKa0BS4APh+sHwP8GyDAQcDtLbB3N+CAYH1H3KyK+7SzzYEdAuwQrE/ATQl8EHAjMD8IvxpYGKyfBVwdrM8Hvt7Cd+Rc4Abg+8F2W9sMrAF2joW1+/txHXBGsD4RmNLuNkds7wGeAPqLtLllN9Tih3kwcHNk+0LgwlbbFbNxTkwwVgG7Beu7AauC9Wtw09yOiddC27+Lm4a3k2zuBe4E3oDrCTs+/q7gBs08OFgfH8STFtg6E/gxcCTw/eCDb3ebkwSjbd8P3LQKj8afVTvbHLPzrcDPira5W11SPjP/tRu7qupvg/UngF2D9ba6l8Dl8Tpcbr3tbQ5cO3cBTwK34EqeT6ub7TFum9dskBXwj8AngJeC7T7a32YF/l1EVorIgiCsnd+PPYANwLWB6++rIjKZ9rY5ynzga8F6YTZ3q2B0NOqyA23XHlpEdgC+BXxUVZ+N7mtXm1V1q6ruj8u1Hwi8urUW1UdEjgWeVNWVrbYlJ4eq6gHA0cCHROSw6M42fD/G49zCX1bV1wHP4dw5/0Mb2gxAUH81D/hGfF+zNnerYPjM/Ndu/E5EdgMIfp8MwtviXkRkAk4shlX120FwW9scRVWfBn6Cc+dMETfbI4y2rR1mgzwEmCcia4BlOLfUFbS3zajq48Hvk8B3cOLczu/HemC9qt4ebH8TJyDtbHPI0cCdqvq7YLswm7tVMHxm/ms3ojMRnoqrJwjDTwlaPBwEPBMpflaCiAhu4qsHVfXyyK62tRlARKaLyJRgfXtcvcuDOOE4IYgWt7uls0Gq6oWqOlNV5+De21tVdZA2tllEJovIjuE6zr9+H238fqjqE8BjIvKqIOgo4IF2tjnCidTcUVCkza2qlGn1gmsh8Gucz3pRq+2J2fY14LfAi7iczvtxfucfAw8BPwKmBXEFuCq4j3uBgRbYeyiumHsPcFewHNPONgd2vBb4VWD3fcBFQfiewC+B1bhi/aQgfLtge3Wwf88WvyeHU2sl1bY2B7bdHSz3h99bB7wf+wMjwftxEzC1A2yejCtB7hQJK8xmGxrEMAzD8KJbXVKGYRhGTkwwDMMwDC9MMAzDMAwvTDAMwzAML0wwDMMwDC9MMIxtGhH5tIhosD4l2G7J6KeBDfsHNkxL2Kci8ukWmGUYXphgGNs6X8X13gY32uj/wfXYbRX7BzaMEQycnV+t1BrDyMH47CiG0bmo6npc58dSCHq5T1DVzc2eS1V/UYBJhlEaVsIwtmlCl1Qwiu6jQfBXgjAVkdMicd8pIr8QkU0i8rSIfENEZsfOt0ZEhkTkdBH5b2Az8LZg32dE5M5g4prfi8itwZAL4bGnAdcGmw9FbJgT7B/jkhI30dfPReR5EXlGRG6KDFcRxvmpiNwmIm8Orr9JRO4TkXc0/QANI4IJhtEt/BZ4Z7B+Kc79czDwAwARORM3eOIDuDGXPgi8BviPcBykCEfgJjD6DDAXN3QEuKGh/wE4DjgNN8jbf4rIfsH+HwCfC9b/JmJD4vg9IjI3OOZPwHuAhYFNt4lIfBjqvXCDEF4e3OdvgW+IyCvqPhXDyIG5pIyuQFVfEJFfBZuPRN0/wbDsnweuVdXTI+G/xE0q837cHBQhU4HXqxugLnqNMyLH9gA/xI2ddAZwjqpuEJGHgyh3qerqDLM/BzwCHK3BXBci8nPcGGjn4UQrZGfgMFV9KIh3J0403g1cknEdw/DCShiG4XL5LwOGRWR8uOAml/lv3JS5UX4RFwuAwCX0ExHZCGzBDR75SuBV8bhZBKO6HoCbUjWcGAlVfRT4GfCm2CEPhWIRxHsSV8KZjWEUhJUwDAN2CX5/lLL/D7HtMS6koKnuCtyUqO8P4mzFtXrargGbpuJGE01yV4VzNUd5KiHeCw1e2zASMcEwjNqEQqfhXEhx/hjbThri+V24UsU7VfXFMFBEpgJPN2DTH4LrvDxh38tJFgjDKBUTDKObeCH43T4W/l84UXiFql7X4Ll7cSWK/xETETkS5xJ6NBIvzYZRqOpzIrIS+BsR+bSqbg3O2Q+8EbiyQTsNo2FMMIxu4ne40sR8EbkHN0/zo6q6UUQ+DlwlItOBfwOewbV6ehPwU1W9IePcPwQ+CvyLiFyLq7v4FGOnvHwg+P2QiFyHq+e4J6Ufx6dwraS+LyJfAnbAtcx6BviC/20bRjFYpbfRNajqS7gWS1Nx9RV3AG8P9l0DzMNVUF+Pq4/4NC5TdZfHuW8GPoKbc/v7wOnAKbiZ7qLx7g7O+3bgtsCG3VPO+UNcH48pwI3A1bgpZA9V1d943bRhFIjNuGcYhmF4YSUMwzAMwwsTDMMwDMMLEwzDMAzDCxMMwzAMwwsTDMMwDMMLEwzDMAzDCxMMwzAMwwsTDMMwDMOL/w938OcZKJsU8gAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "model.train(train, val, test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We see that the model will automatically generate and plot the training process, along with the validation result and test result.\n",
    "\n",
    "(**Model Prediction and Repuposing/Screening**) Next, we see how we can predict affinity scores on new data. Suppose the new data is a new drug below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drug Property Prediction Mode...\n",
      "in total: 1 drugs\n",
      "encoding drug...\n",
      "unique drugs: 1\n",
      "do not do train/test split on the data for already splitted data\n",
      "predicting...\n",
      "The predicted score is [0.003792080795392394]\n"
     ]
    }
   ],
   "source": [
    "X_drug = ['CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CC=CC=C4)N']\n",
    "X_pred = utils.data_process(X_drug = X_drug, y = y, drug_encoding = drug_encoding, split_method='no_split')\n",
    "y_pred = model.predict(X_pred)\n",
    "print('The predicted score is ' + str(y_pred))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also do repurposing/screening using the trained model. Basically, for repurposing/screening a set of new drugs (**r**), we run the above prediction function. We wrap the operation into a ```models.repurpose```.\n",
    "\n",
    "For example, suppose we want to do repurposing from a set of antiviral drugs for the COVID-19 target 3CL protease. The corresponding data can be retrieved using ```dataset``` functions.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Repurposing Drug 1 Name: Abacavir\n",
      "Repurposing Drug 1 SMILES: C1CC1NC2=C3C(=NC(=N2)N)N(C=N3)C4CC(C=C4)CO\n",
      "Repurposing Drug 1 Pubchem CID: 441300\n"
     ]
    }
   ],
   "source": [
    "r, r_name, r_pubchem_cid = dataset.load_antiviral_drugs()\n",
    "print('Repurposing Drug 1 Name: ' + r_name[0])\n",
    "print('Repurposing Drug 1 SMILES: ' + r[0])\n",
    "print('Repurposing Drug 1 Pubchem CID: ' + str(r_pubchem_cid[0]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we can call the ```repurpose``` function. After feeding the necessary inputs, it will print a list of repurposed drugs ranked on its affinity to the target protein. The ```convert_y``` parameter should be set to be ```False``` when the ranking is ascending (i.e. lower value -> higher affinity) due to the log transformation, vice versus."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "repurposing...\n",
      "Drug Property Prediction Mode...\n",
      "in total: 82 drugs\n",
      "encoding drug...\n",
      "unique drugs: 81\n",
      "Done.\n",
      "predicting...\n",
      "---------------\n",
      "Drug Repurposing Result\n",
      "+------+----------------------+-------------+-------------+\n",
      "| Rank |      Drug Name       | Interaction | Probability |\n",
      "+------+----------------------+-------------+-------------+\n",
      "|  1   |      Zidovudine      |     YES     |     0.82    |\n",
      "|  2   |      Stavudine       |      NO     |     0.49    |\n",
      "|  3   |     Zalcitabine      |      NO     |     0.39    |\n",
      "|  4   |      Didanosine      |      NO     |     0.20    |\n",
      "|  5   |      Nevirapine      |      NO     |     0.19    |\n",
      "|  6   |    Fosamprenavir     |      NO     |     0.17    |\n",
      "|  7   |      Amprenavir      |      NO     |     0.10    |\n",
      "|  8   |      Pyrimidine      |      NO     |     0.07    |\n",
      "|  9   |    Emtricitabine     |      NO     |     0.06    |\n",
      "|  10  |     Tromantadine     |      NO     |     0.03    |\n",
      "checkout ./result/repurposing.txt for the whole list\n"
     ]
    }
   ],
   "source": [
    "y_pred = CompoundPred.repurpose(X_repurpose = r, model = model, drug_names = r_name)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Saving and loading models are also really easy. The loading function also automatically detects if the model is trained on multiple GPUs. To save a model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save_model('./tutorial_model')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To load a saved/pretrained model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<DeepPurpose.CompoundPred.Property_Prediction at 0x7fe9bec77090>"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = CompoundPred.model_pretrained(path_dir = './tutorial_model')\n",
    "model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also provided more functionalities for DTI research purposes. \n",
    "\n",
    "For example, this [demo](https://github.com/kexinhuang12345/DeepPurpose/blob/master/DEMO/Drug_Property_Pred-Ax-Hyperparam-Tune.ipynb) shows how to use Ax platform to do some latest hyperparameter tuning methods such as Bayesian Optimization on DeepPurpose.\n",
    "\n",
    "They are described in details in tutorial 1 and in the github repository."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "That wraps up our tutorials on the main functionalities of DeepPurpose's Drug Property Prediction framework! \n",
    "\n",
    "Do checkout the previous & upcoming tutorials:\n",
    "\n",
    "Tutorial 1: Training a Drug-Target Interaction Model from Scratch\n",
    "\n",
    "Tutorial 3: Repurposing and Virtual Screening Using One Line of Code\n",
    "\n",
    "**Star & watch & contribute to DeepPurpose's [github repository](https://github.com/kexinhuang12345/DeepPurpose)!**\n",
    "\n",
    "Feedbacks would also be appreciated and you can send me an email ([email protected])!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}